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ABSTRACT 
 
This  report  is  a  condensation  of  the  pertinent available literature with 
respect to artificial intelligence and expert systems which might  be  of  some 
interest  to  people within the oil and gas industry. It has been prepared with 
the  view  to  design  and implementation of an expert system for log analysis, 
based on our proprietory log analysis package, LOG/MATE ESP. The examples  used 
in  this report have been phrased in log analysis terms to aid understanding by 
practioners of this arcane black art. 
 
The report covers the following topics: 
 
               Introduction to Artificial Intelligence 
               What Is An Expert System ? 
               When and Where are Exprt Systems Used ? 
               Using an Expert System 
               The Knowledge Base 
               The Inference Engine 
               A Not So Trivial Example 
               Problem Solving Techniques 
               Languages and Tools 
               Petroleum Industry Examples 
                    Drilling Advisor 
                    Prospector 
                    Dipmeter Advisor 
                    Expert Log Analysis System ELAS 
                    Mudman 
               Some Observations on the Conventional Wisdom 
 
               Appendix 1 - Definitions of Inferencing and Search Techniques 
               Appendix 2 - Tools of the Trade 
               Appendix 3 - Bibliography 
 
No  great attempt has been made to be original. Much of the report is condensed 
from material listed in the Bibliography. 
 
This  material,  along  with  the  general  articles  in the Bibliography, will 
provide sufficient grounding in  expert  systems  terminology  for  anyone  who 
wishes   to  become  familiar  with  the  subject.   Unfortunately,  even  this 
condensation is rather lengthy, amounting to some 40 typewritten pages, gleaned 
and  winnowed  from  over  one  thousand  pages of carefully selected material. 
Clearly there is much more, including a three volume,  2000  page  Handbook  of 
Artificial Intelligence, numerous other major works, plus the transactions of a 
dozen or more symposia, and the usual plethora of technical journals, published 



monthly since 1955. 
 
In  the  petroleum  industry, well log analysis, property evaluation, reservoir 
simulation, drilling operations, and geologic interpretation have been attacked 
with  AI  techniques.   Only  limited  forms  of  geologic  interpretation, log 
analysis and drilling  hydraulics  have  received  any  significant  attention, 
however. 
 
The balance of this article provides an overview of  expert  systems  from  the 
petroleum  applications  point of view, provides definitions of the relevant AI 
terminology, looks at the tools available  for  creating  expert  systems,  and 
reviews progress to date in our industry. 
 
 
 
 
INTRODUCTION 
 
Researchers have  worked to  develop artificial  intelligence for  a number  of 
reasons. One is to  help understand the human thinking process  by modelling it 
with computers.  Another is to make  better computer hardware by  modelling the 
computer more  closely after the  human brain.  More achievable goals,  such as 
making computers act more  human or easier for humans to use,  are also part of 
the AI spectrum, as are robotics  and pattern recognition or artificial vision. 
 
Natural language  understanding, automatic translation, and  automatic computer 
programming are other aspects of artificial intelligence. 
 
Until  a few  years ago,  these topics  were  buried in  the academic  research 
environment.   Now  robots,  expert systems  for  computer  configurations  and 
dipmeter  analysis,  as  well  as  many  consultative  tasks  such  as  medical 
diagnostics, are available commercially from the  AI community. One pundit once 
explained that "If it works, it's not AI". This is no longer true. 
 
The distinctions between conventional programming, intelligent programming, and 
artificial intelligence  are not hard  and fast. Conventional  programming uses 
procedural languages  such as  Basic or  Fortran to  create sequential  code to 
solve  explicitly  stated  problems.  Intelligent  programming  goes  one  step 
further. Here data bases are used to hold  much of what would otherwise be hard 
code. As a  result, the system is  much more flexible, and  program sequence or 
content can be modified at will by the  user, as can the knowledge contained in 
the numeric and algorithmic sections of the data base. 
 
Artificial  intelligence software  uses a  process  called symbolic  processing 
instead of  linear processing of  variables in sequence.  Although conventional 
computing uses symbols  (variables) in describing the program,  the symbols are 
not  really  manipulated  by  the  operating  system  to  create  new  symbols, 
relationships,  or  meanings.  In  artificial  intelligece,  new  relationships 
between symbols will be  found, if they exist, that were  not explicitly stated 
by  the programmer.  In  addition, symbols  without  values  can be  propagated 
through the  relationships until  such time as  values become  available, again 
without help  from the programmer.  Anyone who has had  a divide by  zero error 
while testing a program will appreciate this feature. 
 
One  of  the most  economically  attractive  facets  of  AI is  expert  systems 
development. Expert systems  apply reasoning and problem  solving techniques to 



knowledge about a specific problem domain  in order to simulate the application 
of human  expertise. Expert  systems depend on  knowledge about  the particular 
specialty or  domain in which  they are designed  to operate. The  knowledge is 
provided by  a human expert during  the design and implementation  stage, hence 
the name  expert system.  Such programs  most often  operate as  an intelligent 
assistant or advisor to a human user. 
 
The term expert  system sometimes has unhappy connotations, such  as a computer 
that is smarter than a human, so the  phrase knowledge based system may be used 
instead. I believe the human ego is strong enough to withstand the label expert 
system when applied to a computer program. 
 
 
 
 
WHEN AND WHERE ARE EXPERT SYSTEMS USED ? 
 
The uses of expert systems are virtually limitless.  The can be used to: 
 
          -  diagnose 
          -  monitor 
          -  analyze 
          -  interpret 
          -  consult 
          -  plan 
          -  design 
          -  instruct 
          -  explain 
          -  learn 
          -  conceptualize 
 
 
Thus they are applicable to: 
 
   Military and Space Systems 
         -  weapon systems 
         -  target identification 
         -  electronic warfare 
         -  adaptive control 
         -  mission planning 
         -  monitoring 
         -  tracking and control 
         -  communication 
         -  signal analysis 
         -  command and control 
         -  intelligence analysis 
         -  targeting 
 
   Industry and Education 
         -  design 
         -  planning 
         -  scheduling 
         -  control 
         -  instruction 
         -  testing 
         -  diagnosis 



         -  monitoring 
         -  maintenance 
         -  repair 
         -  operation 
 
   Professions and Consulting (law, medicine, engineering, accounting, law 
   enforcement, software design) 
         -  image analysis 
         -  interpretation 
         -  instruction 
         -  data and text analysis 
         -  specification 
         -  design 
         -  verification 
         -  maintenance 
         -  diagnosis 
         -  treatment 
 
 
Expert systems are feasible where: 
 
       1. there is a high payoff relative to the effort needed to create the 
          system, 
 
       2. the problem can only be solved with the help of an expert's 
          knowledge, 
 
       3. an expert is available who is willing to formalize his knowledge, 
 
       4. the problem may have more than one rational acceptable answer, 
 
       5. the problem, solution, and input data descriptions change  rapidly 
          over time or space, 
 
       6. the problem is never fully defined. 
 
 
In the  petroleum industry, well  log analysis, property  evaluation, reservoir 
simulation, drilling operations, and geologic  interpretation satisfy the above 
criteria.  Only  limited  forms of  geologic  interpretation, log  analysis and 
drilling hydraulics have received any significant attention to date. 
 
 
 
 
WHAT IS AN EXPERT SYSTEM ? 
 
Edward  A.  Feigenbaum, a pioneer in expert systems, states:  "An expert system 
is an intelligent computer program that uses knowledge and inference procedures 
to  solve  problems  that  are  difficult  enough  to require significant human 
expertise for their solution.  The knowledge necessary to  perform  at  such  a 
level,  plus the inference procedures used, can be thought of as a model of the 
expertise of the best practioners of the field." 
 
Thus, an expert system consists of: 
 



1.  a knowledge  base  of  domain  facts  and  heuristics  associated with  the 
    problem, 
 
2.  an  inference procedure  or control structure  for utilizing  the knowledge 
    base in the solution of the problem, often called an inference engine, 
 
3.  a  working memory, or global data base,  for keeping  track of  the problem 
    status, the input data for the particular problem, and the relevant history 
    of what has been done so far. 
 
Figure 1 shows a block diagram of an idealized expert system. 
 
The  knowledge in an expert system consists of facts and heuristics.  The facts 
consist of a body of information that is widely shared, publicly available, and 
generally  agreed  upon  by  experts  in  a  field.   The heuristics are mostly 
private,  little  discussed  rules  of   good   judgement   that   characterize 
expert-level  decision making in the field.  The rules may be difficult for the 
expert to verbalize, and hence are difficult to elicit or  share.   Some  facts 
and/or  heuristics  may  be proprietory to the user or user's organization, and 
are thus not shareable outside the organization. 
 
In fact, one  of the major uses of  expert systems in business is  to capture a 
corporation's overall knowledge base as embodied  in the brains of their senior 
technical and executive staff. The rationale is that the expert system will not 
retire, get sick, die, or take trade secrets to a competitor. 
 
As  an  example,  the  facts  in  an  expert  log analysis system are the known 
properties of rocks and fluids. The heuristics include mathematical rules  such 
as  Archie's  water  saturation equation, as well as usage rules which describe 
when this equation  might  be  used  in  achieving  the  desired  results.  The 
inference  engine in a conventional log analysis program is the procedural code 
created by the programmer. It can make only  limited,  predetermined  types  of 
decisions,  and  cannot reason or show why it took a particular path. An expert 
system overcomes these drawbacks to conventional programming. 
 
As  a prelude to further work on AI in log analysis, these facts and heuristics 
have been consolidated by the author into a textbook called "The Log  Analyst's 
Handbook",  to  be  published  in early 1986 by Pennwell Publishing, Tulsa, OK. 
The layout and content of the book were specially designed with AI research  in 
mind.   However,  additional  facts,  historical fact/result sets, and unspoken 
heuristics will have to be extracted before a  detailed  expert  system  design 
could be attempted. 
 
When the domain knowledge is stored as  production rules, the knowledge base is 
often referrred  to simply as  the rule base, and  the inference engine  as the 
rule interpreter.  It is preferable, when describing real problems, to separate 
the factual  knowledge in  the knowledge base  into a  fact or  historical data 
base, and the heuristics on how to use the facts into a rule base. The two data 
bases, the  rules and the  facts, comprise the  knowledge base. The  reason for 
this is that facts change rapidly in  time and space and heuristics evolve more 
slowly. Thus some  logical separation is desirable.   However, this terminology 
might  confuse some  AI  practitioners, unless  these  definitions are  clearly 
established. 
 
A  human  domain  expert  usually  collaborates with a knowledge engineer and a 
programmer to develop the knowledge base. The synergy between these  people  is 



important  to  the  success of the project.  The performance level of an expert 
system is primarily a function of the size and quality of  the  knowledge  base 
that it possesses. 
 
It  is  usual to have a natural language interface to communicate with the user 
of the system.  Menu driven systems are also practical and  offer  considerable 
cost  advantages,  as  well  as ease of user training. Normally, an explanation 
module is also included,  allowing  the  user  to  challenge  and  examine  the 
reasoning process underlying the system's answers. 
 
An expert  system differs from more  conventional computer programs  in several 
important  respects.  In  an  expert system,  there is  a  clear separation  of 
general knowledge  about the problem from  the system that uses  the knowledge. 
The  rules forming  a  knowledge base,  for example,  are  quite divorced  from 
information about the current problem and from methods for applying the general 
knowledge  to  the problem.   In  a  conventional computer  program,  knowledge 
pertinent to the problem and methods for  utilizing it are often intermixed, so 
that it is difficult  to change the program.  In an  expert system, the program 
itself is only an  interpreter and ideally the system can  be changed by simply 
adding or deleting rules in the knowledge base. 
 
Not all modern software is as clumsy to change as suggested above. Our existing 
LOG/MATE ESP log analysis/geological/engineering  workstation is designed along 
AI lines,  by separating  the data  that drives  the plot,  print, and  compute 
modules from the interpreters which create the result. 
 
 
 
 
USING AN EXPERT SYSTEM 
 
There are  three different  ways to use  an expert system,  in contrast  to the 
single mode (getting  answers to problems) characteristic of  the more familiar 
type of computing. These are: 
 
   1.  getting answers to problems -- user as client, 
 
   2.  improving or increasing the systems's knowledge -- user as tutor, 
 
   3.  harvesting the knowledge base for human use -- user as pupil. 
 
Users  of an  expert system  in mode  (2) are  known as  domain specialists  or 
experts. It  is not  possible to build  an expert system  without at  least one 
expert in the domain involved in the project. 
 
An expert  system can act  as the perfect memory,  over time, of  the knowledge 
accumulated by many specialists of diverse  experience.  Hence, it can and does 
ultimately attain a level of consultant  expertise exceeding that of any single 
one of its "tutors."   There are not yet many examples  of expert systems whose 
performance consistently  surpasses that  of an  expert. There  are even  fewer 
examples of  expert systems  that use  knowledge from  a group  of experts  and 
integrate it effectively.  However, the promise is there. 
 
To accomplish this  task, an expert system  must have a method  for recognizing 
and remembering new  facts and heuristics while  the system is in  use, and for 
gracefully forgetting those which are inconsistent, incorrect, or obsolete.  At 



the moment, most expert systems require that such changes be made off-line from 
actual program execution. 
 
 
 
THE KNOWLEDGE BASE 
 
Knowledge representation in the knowledge base is an important aspect of expert 
system design. The three major forms of knowledge representation are production 
rules, frames, and semantic sets. The  different methods are used for different 
data types and data uses. Production  rules are used where IF...THEN statements 
define the knowledge  adequately. Frames are used to  represent descriptive and 
relational data that cluster or that conform to a stereotype. Semantic sets are 
most  useful  for  defining classifications,  physical  structures,  or  causal 
linkages. 
 
The most  popular approach to representing  the domain knowledge needed  for an 
expert system  is by  production rules,  also referred  to as  SITUATION-ACTION 
rules or IF-THEN rules.  Thus, a knowledge base  may be made up mostly of rules 
which are  invoked by  pattern matching with  features of  the problem  as they 
currently appear  in the global  data base. A typical  rule for a  log analysis 
system might be: 
 
               IF matrix density is greater than sandstone matrix density 
              AND lithology is described as shaly sand 
             THEN suspect a heavy mineral OR cementing agent 
               OR suspect inadequate shale corrections 
               OR suspect poor log calibrations 
 
Most conventional  log analysis  programs contain checks  and balances  of this 
type, coded in Basic or Fortran, with appropriate action being dictated by user 
defined logic switches. The  virtue of an expert system knowledge  base is that 
the expert can modify  this rule set with comparative ease,  compared to a hard 
coded program.  LOG/MATE ESP  contains these  rules in  a user  accessable data 
base, so the same change can be implemented easily also. In this case, the rule 
must be  formulated mathematically, although the  output may be a  text message 
similar to the ACTION part of the rule described above. 
 
The  knowledge base  may  also  contain large  amounts  of  quantified data  or 
algorithms which help  quantify data. In the petroleum industry,  such data may 
represent the  physical and chemical properties  of rocks and fluids,  or costs 
and income data for different  production environments, or predictive equations 
which quantify  empirical and  well accepted  rules of  thumb. Equations  which 
predict porosity  from sonic  travel time or  production rate  from exponential 
decline are well known examples. 
 
In  the  petroleum environment, it is inconceivable that an expert system could 
be successful without extensive information of this type in its knowledge base. 
Much  of  our  rule  base  consists of empirical rules of thumb which have been 
quantified by many experts, and used by larger numbers of practitioners. 
 
This information  can be gleaned from  literature search, from review  of input 
data, analysis  parameters, and comparison of  ground truth versus  output from 
prior work, and from  manipulation of known data using the  laws of physics and 
chemistry. Thus, a large fraction of the  knowledge base does not come directly 
from the  brain of a  single expert, but  is really  a digest of  the reference 



material  he would  use  while performing  his  analysis.  This information  is 
sometimes called world knowledge,  but it is still very specific  to the domain 
in question. 
 
Most existing rule-based systems contain hundreds of rules, usually obtained by 
interviewing experts  for weeks  or months.   In any  system, the  rules become 
connected to  each other by association  linkages to form rule  networks.  Once 
assembled,  such  networks  can  represent a  substantial  body  of  knowledge, 
although some of it may be incomplete, contradictory, fuzzy, or plain wrong. 
 
In LOG/MATE ESP, we call these networks  by the generic label of ROUTINE, which 
is an  assemblage of individual  algorithms connected by  conditional branching 
logic. The  routine, with  its associated computation  parameter files  and raw 
data records, constitutes the specific rule network  which will be used on this 
data set.  Unfortunately, the network must  be created manually, usually  by an 
expert, and tuned for each subsequent use, usually  by a low level user with or 
without the guidance of a human expert. 
 
Although  LOG/MATE  ESP  has  an extensive rule base, and can have an extensive 
knowledge base as well, it is not  yet  an  expert  system  because  it  cannot 
perform any reasoning - it cannot chose the most likely rule network to use for 
a particular problem. A diagram of the data base for LOG/MATE ESP is  shown  in 
Figure 2; it has been especially designed to contain rules, facts, global data, 
input  data,  and  answers,  in  anticipation  of  adding  or  interfacing   an 
inferencing technique to the system. 
 
An expert usually has  many judgemental or empirical rules, for  which there is 
incomplete support from the available evidence.  In such cases, one approach is 
to attach  numerical values (certainty  factors) to  each rule to  indicate the 
degree of  certainty associated  with that rule.   In expert  system operation, 
these certainty values  are combined with each  other and the certainty  of the 
problem data, to arrive at a certainty value for the final solution.  Fuzzy set 
theory, based on possibilities, can also be utilized. 
 
Often, beliefs are formed or lines of  reasoning are developed based on partial 
or errorful information.   When contradictions occur, the  incorrect beliefs or 
lines  of  reasoning causing  the  contradictions,  and all  wrong  conclusions 
resulting from them, must be retracted.  To  enable this, a data-base record of 
beliefs  and their  justifications must  be maintained.   Using this  approach, 
truth maintenance techniques  can exploit redundancies in  experimental data to 
increase system reliability. 
 
 
 
 
THE INFERENCE ENGINE 
 
As indicated  earlier, an expert system  consists of three major  components, a 
set  of rules,  a global  data  base and  a  rule interpreter.   The rules  are 
actuated by  patterns, (which match  the IF sides of  the rules) in  the global 
data base.  The application  of a rule changes the system  status and therefore 
the data base, enabling some rules  and disabling others.  The rule interpreter 
uses a control strategy  for finding the enabled rules and  deciding which rule 
to apply.   The basic control  strategies used may  be top down  (goal driven), 
bottom  up  (data   driven),  or  a  combination   of  the  two  that   uses  a 
relaxation-like convergence process  to join these opposite  lines of reasoning 



together at some intermediate point to yield a problem solution. 
 
The rule interpreter, or control strategy,  is often called the problem solving 
paradigm or  model in  the AI literature.  Other terms  used are  the inference 
engine, the solution protocol, reasoning, or deduction. 
 
The essential difference between conventional programming and expert systems is 
this  ability to  reason  or deduce;  to  take alternate  paths,  not based  on 
pre-ordained switches, but based on logical rules  and the current state of the 
global data base. 
 
The  problem-solving  model,  and  its  methodology, organizes and controls the 
steps taken to solve the problem.  One commonplace but powerful model  involves 
the  chaining  of  IF-THEN  rules to form a line of reasoning.  If the chaining 
starts from  a  set  of  conditions  and  moves  toward  some  possible  remote 
conclusion, the method is called forward chaining. An example might be building 
a custom tailored minicomputer, in which a list of desired features leads to  a 
goal  of  a complete detailed system configuration parts list. Forward chaining 
usually is used to construct something. 
 
If the conclusion is known (eg., it is a  goal to be achieved), but the path to 
that conclusion  is not known,  then working backwards  is called for,  and the 
method  is  called  backward  chaining.   For   example,  a  set  of  botanical 
descriptions ought to lead  to a species name by backward  chaining to find the 
set of conditions  in the knowledge base  which match the plant  description at 
hand. Backward chaining methods are usually  used for diagnostic purposes; they 
start from a list  of symptoms and attempt to find a  cause which would explain 
the symptoms. 
 
The  problem with forward chaining, without appropriate heuristics for pruning, 
is that you would derive everything possible whether you needed it or not.  For 
instance,  the  description  of  a  chess  game from its possible opening moves 
creates an enormous explosion of possibilities. If every elementary particle in 
in  the  universe were a computer operating at the speed of light, the universe 
is not old enough to have computed all possible combinations. 
 
Backward chaining works from goals to  subgoals The problem here, again without 
appropriate heuristics for  guidance, is the handling  of conjunctive subgoals. 
Conjunctive goals are those  which interact with each other, and  which must be 
solved  simultaneously.  To  find a  case  where all  interacting subgoals  are 
satisfied,  the  search  can  often result  in  a  combinatorial  explosion  of 
possibilities too large for real computers. 
 
Thus  appropriatre  domain  heuristics  and   suitable  inference  schemes  and 
architectures must be  found for each type  of problem to achieve  an efficient 
and effective  expert system.  There are no  universal, general  purpose expert 
systems. Further information on these methods can be found in APPENDIX 1. 
 
The  knowledge  of  a  task  domain  guides  the  problem-solving  steps taken. 
Sometimes the knowledge is quite abstract; for example, a symbolic model of how 
things   work  in  the  domain.   Inference  that  proceeds  from  the  model's 
abstractions to more detailed, less abstract statements is called model-driven 
inference and the problem-solving behavior is termed expectation driven. 
 
Often in problem solving, however you are working upwards from the details or 
the specific  problem data  to the higher  levels of  abstraction,  in the 



direction of  what it all  means.  Steps in  this direction are  called data 
driven.  If you choose  your next step either on the basis of  some new data or 
on the  basis of  the last problem-solving  step taken,  you are  responding to 
events, and the activity is called event driven. 
 
 
 
A NOT SO TRIVIAL EXAMPLE 
 
It was not  difficult to think of  a knowledge base as  described earlier. Many 
computer programs already have them. Humans work  easily with tables of data or 
lists of procedural steps.  It is much more difficult to  conceive of reasoning 
or deduction  in a computer program,  although the simple examples  given above 
suggest the possibilities. 
 
Consider  the drawing  of the  three animals  in  Figure 3.  Humans with  prior 
experience can recognize  the difference between them  virtually instantly, can 
name the  species and sex,  and guess their  approximate ages. Some  people may 
even be able  to tell the breed of  the animals. Could an expert  system do the 
same ? 
 
First, try writing down  a list of descriptive features that  you know for each 
of  these three  animals. Do  not rely  solely  on the  characteristics in  the 
drawing. Include  enough information  so that  none of  these animals  could be 
mistaken  for a  zebra or  a dog.  Then check  off on  each of  your lists  the 
observable features  of each animal in  the illustration.  Does  your checklist 
identify each  animal uniquely ?   Keep improving your  list until there  is no 
doubt. You may need a number of conditional statements, using "AND" and "OR" to 
make   identification  positive,   or  even   some   numerical  procedures   or 
probabilities to handle extreme cases. 
 
We  have  just described the process of extracting knowledge from an expert and 
using inferencing to draw conclusions. Backward chaining in  an  expert  system 
would  check  the  checklists, and a reasonable pattern match would generate an 
answer as to the animal's species, along with a statement as  to  its  probable 
chance of being correct. 
 
In this case, to  emulate the human brain's ability to  do pattern recognition, 
we  had  to   resort  to  a  brute   force  listing  of  pattern   features,  a 
semi-quantitative  description of  the  animals.  Various heuristics  would  be 
needed in  a real program  to account for  the fact  that you cannot  "see" all 
around the animal  in a drawing, and  must make assumptions about  symmetry and 
hidden features.  After all,  this may  only be a  drawing of  a drawing  of an 
animal, and not a real animal at all, 
 
Now try the animal in Figure 4 on  your checklists. Did you identify the animal 
right away or did you need further updates  to your knowledge base?  Did any of 
your updates  create conflicts or contradictions?   This process  describes the 
"expert as tutor" mode of operation. 
 
Expert systems are  not good at pattern recognition from  outline drawings such 
as  these, but  do better  on quantized  lists  of facts  and relationships  as 
described in  our example. Real pattern  recognition is coming -  especially in 
military and aerospace applications such  as target identification and response 
strategies. 
 



To complete this  exercise, consider the possibility of having  more data, such 
as X-rays of the  animals' skeleton, autopsy and dissection results.  or even a 
drawing or photograph of other views of the animal. This information would make 
identification much easier, and allow the  programmer to create many new rules, 
and to add to the factual data base. 
 
These  sets  of  extra  data  are analogous to extra well logs or extra non-log 
data, such as core, test, and production history information.  Obviously,  with 
more  facts  to  work  on,  and  more  rules  to  evaluate, an expert system to 
determine animal species or the production to be expected from a well, will  do 
a  better  job.   Thus integration of various disciplines in a common knowledge 
base is a natural outcome of expert system research. 
 
 
 
 
PROBLEM SOLVING TECHNIQUES 
 
Different  types  of  experts  use different  approaches  to  problem  solving. 
Knowledge, for example, can be represented  in many different ways.  Similarly, 
there are  many different  approaches to  inference and  many differnt  ways to 
order one's  activities (See  Appendix 1).  Generalized models  (paradigms) are 
available in the form of system building tools. 
 
A consultation paradigm is a generic conception of a particular type of problem 
solving that is common to several different domains.  Thus,  we  refer  to  one 
consultation  paradigm as the diagnosis/prescription paradigm. The name derives 
from medical problems, such as diagnosing infections  and  recommending  drugs. 
Many  other medical problems also seem to involve a similar approach to problem 
solving.  But problems in various nonmedical situations often seem  to  require 
similar   expertise;   reviewing   a   set  of  symptoms,  considering  various 
possibilities, and then recommending actions based on a qualified  estimate  of 
the probable causes.  Most petroleum  related expert  systems use  some form of 
consultative model. 
 
 
 
 
LANGUAGES AND TOOLS 
 
Tools allow  knowledge engineers to construct  knowledge systems to  help users 
solve problems that  can be described in terms  of one, or at most,  a very few 
consultation paradigms. 
 
Knowledge  representation,  inference,  and  control  strategies  are  specific 
software techniques.  In  some cases one technique, such  as certainty factors, 
will contribute to a solution for more  than one consultation paradigm.  On the 
other hand, some techniques are  strongly associated with particular paradigms. 
In general,  specific types of  problems imply tools that  are built up  with a 
certain set of representation, inference, and control techniques. 
 
There  is not,  however, a  one-to-one  match between  software techniques  and 
problems.  One programmer may approach  a constraint satisfaction problem using 
a tool based  on backward chaining; another knowledge engineer,  faced with the 
same problem,  might choose a tool  that relies on forward  chaining.  However, 
few knowledge engineers  would probably choose to use a  backward chaining tool 



to  tackle  a  complex  planning  problem,  because   it  is  known  to  be  an 
inappropriate model. 
 
When choosing a tool,  you want to be very sure that  the specific tool choosen 
is  appropriate  for  the  type  of  problem   on  which  it  is  to  be  used. 
Unfortunately, since knowledge  engineers do not understand how  to handle most 
of the problems that human experts routinely  solve, and since there are only a 
few  tools available,  many types  of  expert behavior  cannot be  conveniently 
encoded with any existing tool. 
 
Thus  in  most  cases,  managers  who  want  to  employ  knowledge  engineering 
techniques have a choice.  They can focus  on problems that are well understood 
and ignore those for  which there are no available solutions  at this time.  Or 
they can develop a sophisticated knowledge engineering  team and try to build a 
system by  creating a  unique set of  knowledge representation,  inference, and 
control techniques in  some general-purpose AI language or  environment such as 
INTERLISP, PROLOG,  or perhaps  OPS5. This  is clearly  too expensive  for most 
small to medium sized companies. 
 
Most companies have  decided to focus on  solving problems for which  there are 
already established tools.   Given the large number of  available problems with 
significant paybacks, this is certainly  a reasonable strategy.  Moreover, even 
companies  that have  decided  to develop  a team  capable  of creating  unique 
knowledge systems  have usually built  that team  while working on  some fairly 
well-understood problem. 
 
The tools  used by  the expert  system community  involve specialized  computer 
languages  and  system   building  tools,  as  well   as  specialized  hardware 
architecture, often  called LISP machines after  the dominant language  used in 
the  USA. The  other popular  language, used  mostly  in Europe  and Japan,  is 
Prolog. Other languages are used in  limited areas. The specialized hardware is 
not described further in this paper. 
 
The conventional  languages, such as  Basic and  Fortran and many  others, have 
been successfully  used to  create expert  systems. The  AI community  tends to 
downplay these  successes, and insist  on using  LISP. It should  be remembered 
that LISP  was invented  at a  time when  Fortran could  not handle  strings of 
characters at all. Much invention has since  taken place and extended Basic and 
other  languages handle  user defined  functions, recursion,  and text  strings 
quite well, all deficiencies which LISP was  supposed to overcome. LISP is also 
very difficult to  read, and programmers often cannot understand  or debug each 
others code, in  contrast with structured extended Basic which  can be composed 
so as to read well in pseudo English. 
 
In addition  to the true  languages, the system  building tools can  be divided 
into three groups: 
 
1.  Small system building  tools that can be run on  personal computers.  These 
tools  are  generally  designed  to   facilitate  the  development  of  systems 
containing less than 400 rules and are not discussed further here. 
 
2.  Large,  narrow system building  tools that run  on LISP machines  or larger 
computers  and are  designed  to  build systems  that  contain  500 to  several 
thousand rules but are constrained to one general consultation paradigm. 
 
3.  Large,  hybrid system building  tools that run  on LISP machines  or larger 



computers  and are  designed  to  build systems  that  contain  500 to  several 
thousand rules and  can include the features of  several different consultation 
paradigms. 
 
Details of the  program languages commonly used for  expert system development, 
and some of the expert system development environments available  commercially, 
are described in APPENDIX 2 and listed by type in Table 1. 
 
 
 
 
PETROLEUM INDUSTRY EXAMPLES 
 
The  following  material  is  taken from  various  references,  listed  in  the 
Bibliography.  It   describes  the   best  known   petroleum  applications   in 
considerable  detail, so  as to  provide a  starting point  for discussion  and 
planning for an expert system for log analysis. 
 
The examples described are: 
 
           1. Drilling Advisor            Elf-Aquitaine      Figure 5 
           2. Prospector                  Stanford           Figure 6 
           3. Dipmeter Advisor            Schlumberger       Figure 7 
           4. Expert Log Analysis System  Amoco              Figure 8 
           5. Mudman                      Baroid           No illustration 
 
These systems demonstrate a variety of methods and implementation techniques. 
 
 
DRILLING ADVISOR 
 
DRILLING ADVISOR is  a prototype knowledge system developed for  the French oil 
company Societe Nationale  Elf-Aquitaine (ELF) by Teknowledge  Inc.  The system 
is  designed  to assist  oil  rig  supervisors  in resolving  and  subsequently 
avoiding  problem situations.   The oil  rig  supervisor is  familiar with  the 
technology, equipment,  and procedures  involved in  the drilling  process, but 
occasionally requires  assistance when  special problems  occur. 
 
Normally,  an  expert is flown to the rig site when such problems occur.  Since 
it is not unusual for drilling-related expenses to exceed $100,000 per  day  or 
for  shutdowns  related  to special problems to last for several weeks until an 
expert can be brought to the site, the savings that an on-rig knowledge  system 
could effect are considerable. 
 
Teknowledge and Elf agreed to develop a  prototype system to solve one specific 
problem, down-hole sticking,  which occurs when the rotary  and vertical motion 
of the drill is impeded. 
 
DRILLING ADVISOR was developed by means of  a tool called KS300, an EMYCIN-like 
tool.  Thus, DRILLING  ADVISOR is a backward chaining,  production rule system, 
like MYCIN, that  takes full advantage of EMYCIN's  user-friendly interface and 
knowledge aquisition facilities. 
 
By using KS300, Teknowledge was able  to develop the initial problem assessment 
and design in a  little under three months and was able  to develop a prototype 
of the drilling advisor sticking system in a little under nine months. 



 
DRILLING ADVISOR has been implemented on two  different systems.  It can be run 
on either a DEC 20 or Xerox 1100 machine. 
 
Currently the knowledge  base of DRILLIING ADVISOR consists of  some 250 rules. 
Approximately 175 of those rules are used  in diagnosis, and the other 75 rules 
are used in  prescribing treatment. Results to date are  very encouraging.  The 
system  has successfully  handled a  number of  difficult cases  that were  not 
included  in the  set  used during  its development.   Current  plans call  for 
extending the capabilities of DRILLING ADVISOR  and for integrating it into the 
actual drilling environment. 
 
 
 
 
PROSPECTOR 
 
PROSPECTOR has one foot in the world of  research and the other in the world of 
commercial  applications.  It  was developed  in  the late  1970's at  Stanford 
Research Institute (SRI) by a team that included Peter Hart, Richard Duda, Rene 
Reboh, K. Konolige, P. Barrett, and  M. Einandi.  The development of PROSPECTOR 
was  funded  by  the  U.S.  Geological  Survey  and  by  the  National  Science 
Foundation. 
 
PROSPECTOR  is designed  to provide  consultation  to geologists  in the  early 
stages of  investigating a  site for  ore-grade deposits.   Data are  primarily 
surface geological observations and are assumed to be uncertain and incomplete. 
The program alerts users to  possible interpretations and identifies additional 
observations that would be valuable to reach a more definite conclusion. 
 
PROSPECTOR  is,  broadly  speaking,  a  descendant  of  MYCIN,  but  it was not 
developed using the EMYCIN system  building  tool.   In  fact,  PROSPECTOR  has 
resulted  in  a new tool, called KAS.  PROSPECTOR goes beyond MYCIN in a number 
of important ways.  The knowledge base of PROSPECTOR, for example, is based  on 
a semantic network organized, in turn, around five different geological models. 
Each model describes the  information  and  relationships  that  pertain  to  a 
particular  type of mineral deposit.  The PROSPECTOR team worked with different 
mineral experts to develop the different models. 
 
In effect, assertions are nodes in the network.  Typical assertions include: 
 
          "There is pervasively biotized hornblende." 
 
          "There is alteration favorable for the potassic zone 
          of a porphyry copper deposit." 
 
Each  assertion is  either unknown,  true, false,  or  assumed to  be true  and 
assigned  some probability.   The arcs  connecting  nodes of  the networks  are 
inference rules. Each rule specifies how  the probability of one assertion will 
affect  the probability  of another  rule.  In  effect, PROSPECTOR's  inference 
rules are the same as MYCIN's production rules.  Additional inference rules are 
used to establish assertions and to order search. 
 
PROSPECTOR is much more flexible than MYCIN  when it interfaces with users.  To 
begin with,  it employs a constrained  natural language interface  (LIFER) that 
allows  the user  to type  sentences  just as  they  would ask  questions of  a 



geological consultant.  LIFER interprets the sentences for PROSPECTOR. 
 
In addition, PROSPECTOR is a "mixed-initiative" system.  The user can volunteer 
information whenever he or she wishes.  Thus, one of the major user  complaints 
about  MYCIN is eliminated.  The user can begin a session by telling PROSPECTOR 
everything known.  The user can stop PROSPECTOR whenever  desired  and  provide 
additional  information.   PROSPECTOR  immediately inserts the volunteered data 
into  its  inference  network  and  adjusts  its   strategies   and   questions 
accordingly.   The  basic  control  strategy,  once the user stops volunteering 
information, is backward chaining. 
 
PROSPECTOR can also accept input in the form of raw data and generate a graphic 
response.  Thus, the user can enter informaiton about a site and PROSPECTOR can 
generate a new map showing conclusions about the site. 
 
Once the  user has volunteered initial  data, PROSPECTOR inserts the  data into 
its  models and  decides which  model best  explains the  given data.   Further 
confirmation of that model then becomes the primary goal of the system, and the 
system asks the  user questions to establish  the model that will  best explain 
the data.  If subsequent data cause the  probabilities to shift, of course, the 
system  changes priorities  and seeks  to  confirm whichever  model seems  most 
likely in light of the additional data. 
 
In  1980,  as  a  test,  PROSPECTOR  was  given  geological,  geophysical,  and 
geochemical information supplied by a group that had terminated exploration  of 
a  site at Mt. Tolman in Washington in 1978.  PROSPECTOR analyzed that data and 
suggested that a previously unexplored portion of the site  probably  contained 
an  ore-grade porphyry molybdenum deposit.  Subsequent exploratory drilling has 
confirmed  the  deposit  and,   thus,   PROSPECTOR   has   become   the   first 
knowledge-based  system to achieve a major commercial success. The weakest part 
of PROSPECTOR's performance was its failure to recognize the full extent of the 
deposit it identified. 
 
PROSPECTOR's five models represent only a  fraction of the knowledge that would 
be required of a comprehensive consultant  system for exploratory geology.  SRI 
continues to develop and study PROSPECTOR, but there are no plans to market the 
system.  The principal scientists who developed  PROSPECTOR and KAS, the expert 
system building tool derived  from PROSPECTOR, have left SRI to  form a private 
company (Syntelligence) and Ms. Reboh has taken a position at the University of 
Calgary. 
 
Thus, PROSPECTOR,  like MYCIN,  has never  become an  operational system.   Its 
innovations and successes,  however, have inspired a large  number of knowledge 
engineers, and there are a number  of commercial systems under development that 
rely on  one or  more of  the features  first developed  and tested  during the 
PROSPECTOR project. 
 
 
THE DIPMETER ADVISOR 
 
Unlike fanciful movie images, oil is rarely  discovered in gushers that send it 
spewing  out of  the ground.   More typically,  the discovery  and draining  of 
fields  is   a  painstaking  process   involving  inferred   reconstruction  of 
underground geology.  The  presence of prehistoric beaches,  deltas, and faults 
several  thousand feet  underground are  important  information suggesting  the 
likely location of oil-bearing formations. 



 
The reconstruction process is based in large part on measurements provided by a 
number of probes called well logs.  The probes are lowered into a well and then 
slowly retrieved, measuring  various physical properties of the  rock every few 
inches as they ascend, Since a log may be as much as 10,000' long, and may make 
many simultaneous  measurements, there is  a significant  amount of data  to be 
interpreted. 
 
One  of  the  important  and  widely  used probes is the dipmeter, which yields 
information about the orientation of rock layers.  From  its  measurements  the 
inclination,  or  dip,  of the subsurface can be computed.  Other commonly used 
logs provide measurements from which such properties as  rock  resistivity  and 
porosity can be determined. 
 
Interpretation of a  dipmeter and related logs requires  inferring the presence 
of  large-scale,  three  dimensional   geologic  formations  from  small-scale, 
two-dimensional information about physical properties. 
 
The task is suited to the expert  systems paradigm for several reasons.  First, 
there are recognized  human experts who routinely solve  the problem, providing 
both an acknowledged source  of expertise that can be tapped  to help build the 
knowledge base and  a standard by which to judge  program performance.  Second, 
skill  at this  task  is acquired  via training  and  experience.  Becoming  an 
interpreter  involves  explicit  study  and  the  skill  is  in  large  measure 
cognitive, rather than perceptual.   Both of these make it more  likely that it 
can be captured as a collection of inference steps. 
 
Finally,  the  domain is  at  the  appropriate  stage  of development.   It  is 
sufficiently well established that it has a  vocabulary of basic concepts and a 
collection  of informal  but useful  rules of  thumb, but  is not  yet so  well 
developed that there is a uniform and reliable general solution method. At this 
stage of  development a  qualitative, symbolic reasoning  approach can  be very 
effective. 
 
Work on  this task also  has a strong pragmatic  motivation.  The field  of log 
interpretation is at  present manpower-limited.  Given the  current emphasis on 
exploration, a  program capable  of high  performance on  this task  would have 
considerable utility. 
 
The Dipmeter  Advisor system  attempts to emulate  human expert  performance in 
dipmeter interpretation.   It utilizes  dipmeter patterns  together with  local 
geological knowledge and measurements from other logs.  It is characteristic of 
the class  of programs that deal  with what has come  to be known as  signal to 
symbol transformation.  The program is written in INTERLISP and operates on the 
Xerox 1100 Scientific Information Processor (Dolphin). 
 
The system is made up of four central components: 
 
(i)  a  number  of  production  rules  partitioned  into  several distinct sets 
according to function (eg., structural rules vs stratigraphic rules) 
 
(ii) an inference engine  that  applies  rules  in  a  forward-chained  manner, 
resolving conflicts by rule order 
 
(iii)  a  set  of  feature detection algorithms that examines both dipmeter and 
open hole data (eg., to  detect  tadpole  patterns  and  identify  lithological 



zones) 
 
(iv)  a  menu-driven graphical user interface that provides smooth scrolling of 
log data. 
 
Conclusions  are  stored   as  instances  of  one  of  65   token  types,  with 
approximately 5  features/token, on  a blackboard that  is partitioned  into 15 
layers  of  abstraction  (eg., patterns,  lithology,  stratigraphic  features). 
There are 90 rules  and the rule language uses approximately  30 predicates and 
functions.  The rules have the familiar empirical sssociation flavor.  A sample 
is shown below.  This sample is similar  to the actual interpretation rule, but 
has been simplified somewhat for presentation. 
 
   IF  there exists a delta dominated, continental shelf marine zone 
   AND there exists a sand zone intersecting the marine zone 
   AND there exists a blue pattern within the intersection 
 
   THEN  assert a distributary fan zone 
 
   WITH         top = top of blue pattern 
   WITH         bottom = bottom blue pattern 
   WITH         flow = azimuth of blue pattern 
 
The  system divides  the task  of  dipmeter interpretation  into 11  successive 
phases as shown below.  After the system completes its analysis for a phase, it 
engages the  human interpreter  in an  interactive dialogue.   He can  examine, 
delete, or modify conclusions  reached by the system.  He can  also add his own 
conclusions.  In addition, he  can revert to earlier phases of  the analysis to 
refer to the conclusions, or ot rerun the computation. 
 
1.  Initial Examination:   The human interpreter can peruse  the available data 
and select logs for display. 
 
2.   Validity  Check:  The  system  examines  the  logs  for evidence  of  tool 
malfunction or incorrect processing. 
 
3.  Green Pattern Detection:  The system identifies zpnes in which the tadpoles 
have similar magnitude and azimuth. 
 
4.  Structural Dip  Analysis:  The system merges and filters  green patterns to 
determine zones of constant structural dip. 
 
+5.  Prelimanary  Structural Analysis:  The  system applies  a set of  rules to 
identify structural features (eg., faults). 
 
6.  Structural  Pattern Detection:  The system  examines the dipmeter  data for 
red and blue  patterns in the vicinity of structural  features.  The algorithms 
used by the system  to detect dip patterns are beyond the  scope of this paper. 
It  is  worth  noting,  however,  that  textbook  definitions  do  not  provide 
sufficient specification.   The problem is  complicatd by local  dip variations 
and occasional gaps in the data. 
 
+7.   Final Structural  Analysis:   The  system applies  a  set  of rules  that 
combines  information from  previous  phases to  refine  its conclusions  about 
structural features (eg., strike of faults). 
 



8.  Lithology  Analysis:  The system  examines the  open hole data  (eg., gamma 
ray) to determine zones of constant lithology (eg., sand and shale). 
 
+9.  Depositional Environment Analysis:  The system applies a set of rules that 
draws conclusions about the depositional environment.   For example, if told by 
the human interpreter  that the depositional environment is  marine, the system 
attempts to infer the water depth at the time of deposition. 
 
10.  Stratigraphic Pattern Detection: The system examines the dipmeter data for 
red, blue, and green patterns in zones of known depositional environment. 
 
+11.  Stratigraphic  Analysis:  The  system applies  a set  of rules  that uses 
information  from  previous  phases to  draw  conslusions  about  stratigraphic 
features (eg., channels, fans, bars). 
 
For the phases shown above, "+" indicates  that the phase uses production rules 
written on the basis of interactions with an expert interpreter.  The remaining 
phases do not use  rules.  The rules obtained to date are  due to J.A. Gilreath 
of Schlumberger Offshore Services, New Orleans,  LA.  The feature detectors and 
signal processing  algorithms were  written independently  by project  members. 
The  scrolling graphics  code was  written by  Paul Barth.   Extensions to  the 
INTERLISP-D menu package were written by Eric Schoen. 
 
 
ELAS: Expert Log Analysis System 
 
ELAS  is an  expert  system  front end  for  Amoco's  interactive log  analysis 
package, which runs  on an IBM mainframe-terminal configuration.  The front end 
was written with the EXPERT tool, and is  used to prompt a user through the log 
analysis steps of the interactive program. 
 
This form of expert system is often  called a surface level model.  The surface 
level model is of the production rule type, whereas the deep model is of purely 
mathematical description,  expressed as  a set  of equations.   The latter  are 
implemented as  complex software  tools, such  as reservoir  simulators or  log 
analysis packages. 
 
From a practical applications point of view, well log interpretation represents 
an important problem, since it permits an  assessment of the likely presence of 
hydrocarbons and possible yields of the well during exploration and production. 
From the  perspective of expert systems  research, this application  is proving 
very helpful in increasing the  understanding of representation, communication, 
and  control processes  in multi-level  systems.   And, from  the more  general 
software  engineering point-of-view,  we  are learning  how  one might  exploit 
existing  software systems  more fully by building a  coordinating and advisory 
system that makes these programs easier to use by a wider variety of expert and 
non-expert users alike. 
 
In many  problem areas, it  is not unusual to  find that valuable  software has 
already  been developed  to aid  the expert  in  data analysis,  the design  of 
experiments, and the interpretation of results.  These programs are often quite 
complex packages, developed  over several years and  enhanced through extensive 
user experience.  In  designing an expert system,  it is only natural  that one 
should want to take advantage of such software. 
 
One of  the first efforts  in modeling expert  advice on  the use of  a complex 



program was the  SACON project which developed  an advisory model for  the MARC 
structural analysis program.  However, there was no interaction between the two 
programs.   SACON  was run  before  the  MARC  program,  giving advice  on  its 
prospective  use.   In  order  to  develop an  expert  system  to  its  fullest 
potential,  interaction  is  needed  between   the  advising  program  and  the 
application programs. 
 
In a  sophisticated system, the interpretive  program will be  fully integrated 
with the  application programs, so that  they communicate their results  to one 
another,  and  advice  changes  dynamically  as   the  model  tracks  the  user 
interaction.  Furthermore,  the system must  have the ability  to automatically 
take  a recommended  action if  the user  agrees.  In  effect, we  will have  a 
program that not only  gives advice, but also can accept the  advice and act on 
it. 
 
A rule based advice  model, called ELAS, has been integrated  with the existing 
Amoco  software  for  well-log analysis.   In order to  accomplish  this  task, 
original well-log software  was reorganized so that its use  could be monitored 
and controlled.  Its  representation was structured according to  the types and 
sequences of methods used by expert analysts.  By allowing the user to vary the 
assumptions and  parameters used in  different individual analyses,  the system 
makes available interactive interpretations of  the alternative approaches that 
an expert might take to a complex problem of well-log analysis. 
 
ELAS runs on  a variety of systems  (including IBM's VM/CMS and  DEC's VAX/VMS) 
using a dual  terminal configuration:  a graphics and  an alphanumeric terminal 
with a  shared keyboard.  The system  allows the user to  interactively perform 
experiments in the analysis of logs.  Advice  is generated based on the results 
of previous experiments, and  a running summary is kept of  the actions already 
taken.  The advisory system is based on the EXPERT rule scheme. 
 
To make interaction  easy for users, the front  end of the ELAS  system has, at 
its top level, a master panel which holds  a snap-shot of the current status of 
the analysis of an already selected  well.  The columns correspond to different 
geological  zones (by  depth) that  have been  chosen for  analysis.  The  rows 
correspond to  the parameters for  the zones.  Initial  values for some  of the 
parameters  must be  supplied  by the  user.   Many of  them,  however, may  be 
obtained through subsequent  analysis.  Some parameters may  stand for specific 
tasks that the user might want to invoke to help in the analysis. 
 
Most user-program communication is controlled through this master panel.  It is 
displayed on the graphics  screen and includes a concise set  of key parameters 
and tasks that are crucial in well-log analysis.  A parameter may be aconstant, 
a log (represented  as a vector of digitized  values for each foot  of depth in 
the well), or an expected characteristic of  the well (eg., the presence of gas 
in some zone). 
 
There is a superficial similarity to a spreadsheet program, the concept used by 
many personal computer programs.  In the  simpler environment of a spreadsheet, 
we see a program  that presents information in a concise  format and allows the 
user to vary a parameter and then  watch all dependent results change.  ELAS is 
faced with a much more complicated computational task, but it tries to show the 
propagation of effects that follow from the  user's change of a parameter value 
or choice of  analysis method within as  short a time as  possible ranging from 
almost instantaneous  to many  seconds.  This is  accomplished by  updating the 
master panel, after which the user may  invoke more detailed panels or displays 



for the specific methods.  Changing a parameter  may imply quite a large number 
of computational  steps and not  all information can  be described in  a simple 
tabular format. 
 
Upon request, ELAS can provide interpretations and recommendations to the user. 
The advice is organized along the topics  indicated on the master panel.  While 
the master panel appears  on the graphics terminal, the advice  is always given 
on the standard terminal so that they may be viewed simultaneously. 
 
ELAS  allows  the  user  to  direct both  the  mathematical  analysis  and  the 
interpretive  analysis by  changing parameters  or invoking  tasks through  the 
master  panel.  The  outcomes of  mathematical  analyses that  follow are  then 
reported back to the  user through this same panel.  The  expert system updates 
its interpretive analysis after every change in  the evidence so that it always 
reflects the  current status of  the panel.   The system also  synchronizes all 
derived logs that are  affected by changes in the panel  parameters or methods. 
Changes are  made either  through user  action or  updates in  the mathematical 
analysis.  The user  has the freedon to  carry out an entire  well-log analysis 
sequence without  ever asking  for advice  from the  system, or  advice may  be 
requested at any stage of the analysis. 
 
To  illustrate  how  different but related mathematical methods of log analysis 
are integrated  into  ELAS,  a  simplified  example  of  a  formula  used  very 
frequently  (Archie's  equation)  is described here.  This equation is used for 
computing water  saturation  in  a  zone  of  interest.   This  calculation  is 
important  because once a zone is identified as bearing hydrocarbons, the fluid 
present in that zone is a combination of water, oil, and gas.  If the amount of 
water  is  known, we can therefore find, by subtraction, the fractions of other 
fluids, which would be oil and gas.   The  parameters  in  this  equation  vary 
depending on the kind of lithologic formations downhole. 
 
The variables of this  equation are quantities that can be  changed through the 
master panel.   A change  in any  of the  variables of  this equation  involves 
recomputation for all feet  in the zone, which can be  in the thousands.  Also, 
the system needs to go beyond recomputation; it must reinterpret and revise the 
status of its conclusions and recommendations. 
 
An  expert  analyst  usually has heuristics on the use of this equation.  These 
heuristics suggest that this formula is appropriate for a given  situation,  or 
that  other  techniques  should  also  be  performed  if  this  method is used. 
Heuristics also suggest what parameters should be monitored, so that when  they 
change  this  equation  is  re-invoked, and what interpretations should be made 
when this equation is used.  It is these types of heuristics that are  captured 
in   the   production  rule  model  and  provide  ELAS  with  its  interpretive 
capabilities. 
 
Based  on the  structure  of ELAS,  a more  generalized  representation can  be 
presented  for  building  an  expert   system  in  other  applications,  Making 
interpretations  of observations  and  tests is  a  common  activity of  expert 
systems.   However,  when  these  observations  are  constantly  changing,  the 
interpretation strategy needs to be far more  dynamic.  This is the scenario in 
ELAS, where the integrated package is automatically passing back arguments from 
the  methods  when  they  are  invoked.    When  an  argument  is  passed,  the 
interpretations are updated. 
 
Amoco's  log-analysis software  requires a  potential user  to have  sufficient 



knowledge  of both  the use  of this  software  and the  techniques of  problem 
solving  in  well-log  analysis.   ELAS  helps  provide  this  expertise.   The 
integration  of  the  production  rules and  mathematical  methods  allows  for 
explicit representation  of rules  that monitor  the methods.   The information 
acquired through  this monitoring is  used to  provide dynamic guidance  to the 
user. 
 
Here are some sample rules in ELAS. 
 
          IF:    POROSITY done and SW not done 
          THEN:  Advise  Compute Sw to determine water saturation 
                          and hydrocarbons in zone. 
 
The above rule represents  the type of knowledge that can  be classified into a 
set of action-recommendation  rules that give advice on  the appropriateness of 
using  a   method  in   terms  of  the   user-supplied  background   data,  the 
user-performed methods  in the analysis, the  outcomes of the  applied methods, 
and incomplete steps in the analysis. 
 
It is  very common  in well-log analysis  to use several  related methods  in a 
specific sequence.   Due to the vast  amounts of data that  quickly accumulate, 
from the user and from the results of  different methods, it is difficult for a 
user to keep track of the correctness  and consistency of an analysis sequence. 
ELAS keeps track  of events by checking  through an explicit set  of production 
rules.  The main function of these rules is to monitor and propagate dependency 
relations  through  the  analysis, and  examine  consistency  between  expected 
parameter values and computed parameter values.  For example, a user may choose 
to perform a certain  method, without realizing that specific tasks  have to be 
carried out  to keep  the analysis  consistent.  Production  rules are  used to 
direct these automatic updates, and a typical example is 
 
          IF:    Sw successfully computed 
          THEN:  Perform Sw goodness of fit. 
 
This class of rules is categorized as sychronization rules. 
 
While  analyzing  a  well,  a  user  may   go  through  a  complex  process  of 
discriminating neutron and density logs, choosing a parameter called Rw through 
an  iterative  statistical procedure,  and  selecting  a certain  porosity  log 
through a  mathematical interpretation  model.  If one  wants to  re-invoke the 
discrimination task on the density log,  the entire chain of subsequent methods 
invoked is affected, and  the system must make this chain  of events consistent 
with the change.  This  is a small example of the  many dependencies that exist 
in  an analysis.   Production  rules indicate  such  relations  and direct  the 
propagation of associated changes.  One example is as follows: 
 
     IF:    WATER_FIT not normal and WATER_FEET more than 20 
     THEN:  Indicate Bad water zone fit; try and choose alternate 
            discriminators using methods A or B. 
 
Production rules are used to compare the  expected values of parameters and the 
results of applying specific methods.  The user has the choice to enter certain 
a priori information about the problem, such as whether one ought to expect gas 
in the well. 
 
     IF:    GAS expected and method C verifies GAS and HYDROCARBON FEET equal 0 



     THEN:  Indicate Hydrocarbon computation inconsistent with the amount of 
            gas detected. 
 
In  this case,  if we  were told  to expect  gas, and  gas is  indicated by  an 
analysis of some  of the logs, but  the overall analysis of  total hydrocarbons 
indicates that no  gas is present, we then  proceed to get clues  as to whether 
the  method of  analysis might  be  at fault,  whether  the logs  are noisy  or 
otherwise inaccurate,  or whether  some underlying  assumption is  unjustified, 
etc.  These  are examples  of the kind  of checking  that is  expressed through 
consistency rules. 
 
All of these rules are part of a structured production system.  This production 
rule  model is  invoked  each time  a mathematical  method  is performed.   The 
control routine of ELAS, using its knowledge about the rules and their purpose, 
gathers all the goals concluded by the production rules, and uses them to carry 
out the functions of adding interpretations  to the problem solution, guiding a 
user on what to do next, pointing out inconsistencies, and maintaining internal 
consistency by self-performing of dependent actions. 
 
The components of the mathematical methods play a crucial role in ensuring that 
all these  rules work.  In a  sense, the real  knowledge of the domain  lies in 
these methods, and  a human expert's perspective of  these mathematical methods 
is used to  extract the necessary and  sufficient set of parameters  from these 
methods for the purpose  of controlling and intepreting them.  We  can see that 
this is  a necessary condition  for ensuring that such  a system can  indeed be 
built; an existing software package should be able to be broken down into a set 
of  methods that  can be  controlled and  interpreted through  precise sets  of 
controlling and observed parameters. 
 
The production  rules may  be viewed  as containing  consistency, control,  and 
interpretive knowledge that is organized around  methods of analysis used by an 
expert log analyst.   This knowledge comes into  play if the user  invokes that 
method, or the state  of the analysis indicates the appropriateness  of the use 
of a method, or  if the method is automatically invoked by the  system due to a 
triggering effect. 
 
ELAS is  currently being  used in  a research  environment for  formalizing and 
integrating knowledge  from different experts  of Amoco's different  regions of 
exploration and production.  Additional efforts  are underway to make available 
this form of analysis to Amoco's practicing well-log analysts in the field. 
 
In order to achieve  higher performance expert systems, we will  likely need to 
use  representations  beyond   production  rules,  such  as   mathematical  and 
quantitative  methods.  These  methods may  already exist  in highly  developed 
software packages,  and in such  cases, we can take  advantage of the  years of 
developmental work.   For domains where such  software packages exist,  we have 
proposed a hybrid  scheme organized around mathematical  methods and production 
rules.  We  have successfully implemented  ELAS using a  domain-specific hybrid 
scheme.  This  structure may prove  to be suitable  for use in  building expert 
systems for other domains with similar problem-solving scenarios. 
 
Although  there have  been  attempts to  build  specific  expert systems  using 
available applications software, there are no  general purpose system tools for 
these tasks.  We are currently examining various approaches to generalizing the 
techniques  needed  for construction  of  hybrid  systems.  The  hybrid  system 
appraoch used for ELAS is a pragmatic first step toward the realization of this 



goal. 
 
 
 
 
MUDMAN 
 
An example of how AI methods are helping people solve difficult problems in the 
commercial  sector  is  NL  Baroid's  expert  system  MUDMAN.  NL Baroid  is  a 
$400-million-per-year company whose product is drilling mud, a lubricant needed 
in drilling oil  wells.  Baroid invented drilling  mud in the 1920s  and is now 
the largest mud company in the world. 
 
Sometimes when Baroid sells  drilling mud to an oil company,  it also sells the 
services of a  mud engineer to stay at  the site and solve  problems.  It takes 
about three years to train a mud engineer.  Baroid has a knowledge base of over 
60 years of mud experience, both in written reports and in the knowledge of mud 
experts with 30 to  40 years in the field.  They wanted  to make that knowledge 
available to mud engineers in the field. 
 
When mud engineers call upon personal knowledge to solve a problem, a plausible 
mechanism to describe this process is  that they search through their memories, 
matching the  current situation  to a  previous pattern.   Then they  may apply 
rules  of  thumb  to  solve  the   problem.   No  conventional  algorithms  are 
universally applicable,  so no  conventional program  can reproduce  the needed 
expertise and solve the business problem.   A system like MUDMAN, however, uses 
AI techniques of  pattern matching and the application of  heuristics, or rules 
of thumb, to solve the problem the way an expert would, using this model of the 
thinking process. 
 
The inputs to MUDMAN include the specifications of  the type of mud needed in a 
pareticular well and  the chemical and physical  properties of the mud  that is 
actually present.  MUDMAN compares the specifications to the actual properties, 
provides  an   analysis  of  drilling   problems,  and   recommends  corrective 
treatments. 
 
MUDMAN was developed in  a joint effort by Baroid and  Professor John McDermott 
(acting department head and principal scientist Department of Computer Science, 
Carnegie-Mellon  University)  and  associates at  Carnegie-Mellon  (CMU).   The 
developers at CMU did the feasibility  studies and applied research and, during 
the  initial  joint   development  period,  trained  Baroid   personnel  in  AI 
techniques.  Since  CMU  turned  over  the  framework  for MUDMAN  to Baroid in 
January 1984,  Baroid has  had full  responsibility for  field test,  updating, 
enhancement, and modificaiton. 
 
MUDMAN wsa specifically designed for sale  to Baroid's customers, which are oil 
companies.  Baroid has  described MUDMAN as the  first expert system sold  as a 
commercial product to the oil industry. 
 
 
 
 
SOME OBSERVATIONS ON THE TRADITIONAL WISDOM 
 
The  following  material is  taken  from  the  Schlumberger references  on  the 
DIPMETER ADVISOR.  They are extremely  candid comments, especially  when coming 



from the  Schlumberger Research group who  do not often discuss  their internal 
failures or politics,  even privately. The comments indicate  both the learning 
curve  and disappointment  curve during  the evolution  of the  project. It  is 
reproduced in this report to emphasise  the experimental and research nature of 
our task, and the  necessity of maintaining an open mind  and critical attitude 
toward all facets of the work. 
 
A common maxim  of expert system development  is that we should  throw away the 
code  for  the  Mark-I  version  of the  system  as  soon  as  it  demonstrates 
feasibility and get  started on Mark-II.  In the  commercial environment, there 
is great reluctance  to throw away code.   As a result, a  more likely scenario 
involves a  series of  progressive releases  of the  system to  the expert  and 
possibly to the engineering organization for development and use. 
 
The fact  is that  even though the  knowledge engineer knows  all too  well the 
limitations of Mark-I, and  even has ideas on how to  overcome them, Mark-I may 
still provide some useful  service.  This is a good illustration  of a conflict 
that can  arise as  a result  of somewhat  different goals  of research  and of 
development  in  expert  systems.   The  former  is  concerned  with  continued 
exposition and machine implementation of  human expert reasoning methods, while 
the latter  is concerned  with construction  of products  that utilize  already 
understood and implemented methods. We do not  yet know how to manage this type 
of progressive  and evolutionary  technology transfer.  (The problem  exists in 
conventional program development as well, as  we have experienced with LOG/MATE 
ESP.) 
 
It is well  accepted that expert system development is  an incremental process. 
Usually we understand this to mean that  the performance of the system improves 
incrementally.   There is, however,  another kind  of  change  that may  occur; 
namely, our experts are themselves moving targets--partially as a result of the 
perspective gained through  experience in expert system  development!  This has 
been apparent during  the Dipmeter Advisor project.  For example,  we have seen 
an increasing  geological awareness in  our expert dipmeter  interpreter.  This 
has led to a series of changes in  the way stratigraphic analysis is handled in 
the system.  Not  all of these changes have proved  useful--the expert appeared 
to be using the program at times as a test bed for his own evolving ideas. 
 
It is traditional wisdom that the task  should be very carefully defined before 
the system is designed.  Our experience has  been that this is quite difficult. 
In consonance with our comments on  the rapid prototyping development strategy, 
it is  not clear that task  definition can be  done in a rigorous  fashion.  We 
suggest a  contingent definition--one  that is  clear for  a time,  but can  be 
easily changed.   We should note  that the  evolving performance of  the system 
itself at least partially fuels changes in the task definition. 
 
It  is generally  accepted that  construction of  the Mark-I  system should  be 
commenced as soon  as one example of  the intended behavior is  understood.  We 
now  believe that  we  spent  too much  time  in  knowledge acquisition  before 
actually starting to build  a system.  This had the effect  of slowing our rate 
of progress.  We could  not move forward in formalizing the  knowledge that had 
been  gained,  because   we  could  not  demonstrate  in   concrete  terms  our 
understanding of it. 
 
Some  of the  development team  also deemed  themselves to  have acquired  more 
expertise than  was warranted.  This is  a natural tendency.  It  was partially 
due to  infrequent interactions with the  expert.  More responsibility  fell on 



the shoulders of the knowledge engineers  to organize the domain knowledge than 
appears prudent.  This infrequency also led  to a problem of validation--how to 
be sure that we were on the right track.   On a related note, we can testify to 
the necessity  of an adequate  set of generic examples  with which to  test the 
system as it evolves. 
 
It is common to  deal with a single expert during the  development of an expert 
system.  The perceived danger is that it  is difficult enough to capture what a 
single expert  is doing,  let alone  a number  of experts.   In the  particular 
context  of dipmeter  interpretation, however,  it  might have  been useful  to 
involve a number of different experts from  the outset.  We now understand that 
there are many schools  of thought on the problem.  There is  also a variety of 
perspectives  that  can  be  brought to  bear  on  it--dipmeter  interpretation 
expertise and geological  expertise are not necessarily co-located  in the same 
person. 
 
While  the rules  for a  first approach  are  most appropriately  phrased by  a 
dipmeter interpreter, we  might have been well-advised to  obtain the necessary 
geological vocabulary  and structure from a  geologist.  In future  systems, we 
will attempt to synthesize these overlapping points of view. 
 
In a  similar vein, we  have noted a  difficulty that  can arise when  a single 
expert is used and when he provides all examples with which to test the system. 
When working  with familiar  examples our  expert does  indeed appear  to apply 
forward-chained  empirical  rules--kind  of   compiled  inferences.   Recently, 
however, we have participated in experiments with a number of interpreters (and 
examples) from  around the world.  During  these experiments we noted  that our 
expert resorted  to a different  mode of  operation when faced  with completely 
unfamiliar  examples.  He  appeared to  reason from  underlying geological  and 
geometric models--abandoning the rules. 
 
In some sense, this is of course  to be expected.  It was instructive, however, 
to actually document the change.  We believe that dealing with multiple experts 
would have  provided concrete evidence  of this  phenomenon much sooner  in the 
life  of the  project.  Actually seeing  the change  in  reasoning was  further 
complicated by the fact that our expert has extremely broad experience.  Hence, 
finding a completely unfamiliar example was quite difficult. 
 
We have also noted a lurking danger in  dealing with experts.  It appears to be 
possible to give an expert a false sense of comfort with a particular formalism 
(eg., rules).  At  times we had a sense  that the expert was trying  to make us 
happy by  expressing what he was  doing in terms  of the rule framework  we had 
offered--perhaps at  the cost of accuracy.   We would be well-advised  to avoid 
over-reliance on the  rule (or any other presently known)  framework.  We don't 
want to convince the expert that this simple idea covers everything he does, or 
that system failures are necessarily the result of incorrect or missing rules. 
 
With regard  to acceptance of the  expert systems approach, our  experience has 
been  somewhat different  from  that  of the  XCON  (R1)  designers at  Digital 
Equipment; that is, for R1 there was general relatively rapid acceptance of the 
ideas within  the organization.   From early in  the project  concerns revolved 
almost totally around performance and utility in the problem domain. 
 
We have seen a substantial increase in the size of the rule base (approximately 
tripled) and the functionality required of  the system before we could consider 
field evaluation.  This is similar to the experience with R1.   The size of its 



rule base also tripled during the development phase. 
 
The traditional wisdom notes the importance of early construction of a flexible 
user interface.   For the Dipmeter Advisor  system the interface  is graphical. 
It has proved  invaluable in testing and user  acceptance.  Furthermore, expert 
systems that are actually used by people  trying to solve problems in their own 
domains of interest  (as opposed to being  used by researchers as  vehicles for 
experimentation  with AI  techniques) must  pay particular  attention to  human 
interface issues. 
 
For the Dipmeter  Advisor system, it was  only after we constructed  a personal 
workstation implementation that  was flexible, robust, and fast  that it became 
possible  to  seriously   consider  testing  by  the   Schlumbrger  engineering 
organization. 
 
One final observation worth noting relates to the impact of an expert system on 
the domain experts.  As has been found in other applications of expert systems, 
the existence  of an expert  system is helping  to identify the  real knowledge 
used in the field--the kind of knowledge  that is rarely found in textbooks.  A 
program that captures some of it at  least gives a concrete basis for comparing 
the methods of different experts.  It can also  help a group to reach some form 
of consensus.   The Dipmeter  Advisor system has  stimulated an  examination of 
current dipmeter interpretation methods that promises to improve quality. 
 
 
 
 
APPENDIX 1 - DEFINITIONS OF INFERENCE AND SEARCH TECHNIQUES 
 
The following material is taken from: 
 
          An Overview of Expert Systems 
          W.B.Gevarter 
          National Bureau of Standards, Washington, DC 
          May, 1982    NBSIR 82-2505 
 
 
 
 
A. EFFICIENT SEARCH MECHANISMS 
 
1.  Forward Chaining 
 
When data or  basic ideas are a  starting point, forward chaining  is a natural 
direction for  problem solving.  It  has been used  in expert systems  for data 
analysis, design, diagnosis, and concept formation. 
 
 
2.  Backward Chaining 
 
This approach is  applicable when a goal  or a hypotheses is  a starting point. 
Expert system examples include those used for diagnosis and planning. 
 
 
3.  Forward and Backward Processing Combined 
 



When the search space is relatively large,  one approach is to search both from 
the  initial  state and  from  the  goal  or  hypothesis state  and  utilize  a 
relaxation type approach to match the solutions at an intermediate point.  This 
approach is also useful when the search space can be divided hierarchically, so 
both a  bottom up and  top down search can  be appropriately combined.   Such a 
combined search  is particularly applicable  to complex  problems incorporating 
uncertainties, such as speech understanding as exemplified in HEARSAY II. 
 
 
4.  Event Driven 
 
This problem solving  direction is similar to forward chaining  except that the 
data or situation is evolving over time.  In  this case the next step is chosen 
either on the basis of new data or in response to a changed situation resulting 
from  the last  problem  solving step  taken.  This  event  driven approach  is 
appropriate for  real-time operations,  such as monitoring  or control,  and is 
also applicable to many planning problems. 
 
 
B. Search Control and Transformation Mechanisms 
 
Many straightforward problems in areas such  as design, diagnosis, and analysis 
have small search  spaces, either because the  problem is small or  the problem 
can be broken  up into small independent  subproblems.  Often a single  line of 
reasoning is  sufficient and so backtracking  is not required.  In  such cases, 
the direct  approach of exhaustive  search can be  appropriate, as was  used in 
MYCIN and R1. 
 
 
1. Generate and Test 
 
Search is often  formulated as "generate and test" -  reasoning by elimination. 
In this approach,  the system generates possible solutions and  a tester prunes 
those  solutions  that  fail  to meet  apprpriate  criteria.   Such  exhaustive 
reasoning by  elimination can be appropriate  for small search spaces,  but for 
large search spaces more powerful techniques are needed. 
 
 
2.  Hierarchical Generate and Test 
 
A hierarchical generate  and test approach can  be very effective if  means are 
available for evaluating candidate solutions that are only partially specified. 
In these cases, early pruning of whole branches (representing entire classes of 
solutions associated with these partial  specifications) is possible, massively 
reducing the search required. 
 
Hierarchical   generate  and   test  is   appropriate  for   many  large   data 
interpretation and  diagnosis problems,  for which  all solutions  are desired, 
providing a generator can  be devised that can partition the  solution space in 
ways that allow for early pruning. 
 
3.  Dependency-Directed Backtracking 
 
In the generate and  test approach, when a line of reasoning  fails and must be 
retracted,  one approach  is  to  backtrack to  the  most  recent choice  point 
(chronological  backtracking).  However,  it is  often much  more efficient  to 



trace errors  and inconsistencies  back to the  inferential steps  that created 
them, using  dependency records  as is  done in  MOLGEN.  Backtracking  that is 
based   on  dependencies   and  determines   what  to   invalidate  is   called 
dependency-directed (or relevant) backtracking. 
 
 
4.  Multiple Lines of Reasoning 
 
This approach can be used to broaden  the coverage of an incomplete search.  In 
this  case, search  programs that  have  fallible evaluators  can decrease  the 
chances of discarding a good solution from  weak evidence by carrying a limited 
number of solutions in parallel, until the best solutions is clarified. 
 
 
5.  Breaking the Problem Down Into Subproblems 
 
This approach  (yielding smaller search spaces)  is applicable for  problems in 
which a  number of  non-interacting tasks have  to be done  to achieve  a goal. 
Unfortunately, few real world problems of any magnitude fall into this class. 
 
For most complex problems  that can be broken up into  subproblems, it has been 
found that  the subproblems interact  so that  valid solutions cannot  be found 
independently.   However,  to  take  advantage of  the  smaller  search  spaces 
associated with this approach, a number of techniques have been devised to deal 
with these interactions. 
 
Sometimes it is possible to find an  ordered partioning so that no interactions 
occur.  The  R1 system  for configuring VAX  computers successfully  takes this 
approach. 
 
A  technique  called  least commitment  coordinates  decision-making  with  the 
availability of  information and  moves the  focus of  problem-solving activity 
among  the  available  subproblems.   Decisions are  not  made  arbitrarily  or 
prematurely, but are postponed until there  is enough information.  In planning 
problems, this  is exemplified  by methods  that assign  a partial  ordering of 
operators in  each subproblem  and only complete  the ordering  when sufficient 
information on the interactions of the subproblems is developed. 
 
Another  approach, used  by MOLGEN  and  called constraint  propagation, is  to 
represent the interaction between the  subproblems as constraints.  Constraints 
can  be  viewed  as  partial descriptions  of  entities,  or  as  relationships 
(subgoals) that must  be satisfied.  Constraint propagation is  a mechanism for 
moving information between subproblems.  By  introducing constraints instead of 
choosing  particular  values, a  problem  solver  is  able  to pursue  a  least 
commitment style of problem solving. 
 
 
6.  Guessing or Plausible Reasoning 
 
Guessing is an inherent part of heuristic search, but is particularly important 
in working with interacting subproblems.  For instance, in the least commitment 
approach the  solution process  must come to  a halt  when it  has insufficient 
informatipon for deciding between competing  choices.  In such cases, heuristic 
guessing is  needed to carry  the solution process  along.  If the  guesses are 
wrong, then dependency-directed backtracking can be used to efficiently recover 
from them.  EL and MOLGEN take this approach. 



 
 
7. Top Down Refinement 
 
Often, the  most important aspects  of a problem can  be abstracted and  a high 
level  solution developed.   This  solution can  then  be iteratively  refined, 
successively including  more details.  An example  is to initially plan  a trip 
using a  reduced scale  map to  located the  main highways,  and then  use more 
detailed maps to refine the plan.  This  technique has many applications as the 
top level  search space is suitably  small.  The resulting high  level solution 
constrains the search to a small portion of  the search space at the next lower 
level, so that at each level the solution can readily be found.  This procedure 
is an important technique for  preventing combinatorial explosions in searching 
for a solution. 
 
 
8. Hierarchical Resolution 
 
Certain problems  can have  their solution  space hierarchically  resolved into 
contributing subspaces  in which the  elements of  the higher level  spaces are 
composed of  elements from  the lower spaces.   Thus, in  speech understanding, 
words would be composed of syllables, words, phrases of words, and sentences of 
phrases.  The resulting heterogenous subspaces are fundamentally different from 
the top level  solution space.  However, the solution candidates  at each level 
are useful for  restricting the range of  search at the adjacent  levels, again 
acting as an  important restraint on combinatorial  explosion.  Another example 
of a  possible hierarchical resolution is  in electrical equipment  design whre 
subcomponents contribute  to the black box  level, which in turn  contribute to 
the system  level.  Similarly, examples  can be  found in architecture,  and in 
spacecraft and aircraft design. 
 
 
9.  Employing Multiple Models 
 
Sometimes the search for a solution utilizing a single model is very difficult. 
The use of alternative  models for either the whole or part  of the problem may 
greatly simplify the  search.  The SYN program  is a good example  of combining 
the strengths  of multiple models by  employing equivalent forms  of electrical 
circuits. 
 
 
10.  Meta Reasoning 
 
It is  possible to add additional  layers of spaces  to a search space  to help 
decide what  to do  next.  These  can be  thought of  as strategy  and tactical 
layers in which meta problem solvers choose among several potential methods for 
deciding what  to do  next at the  problem level.   The strategy,  focusing and 
scheduling meta  rules used  in CRYSALIS  and the  use of  a strategy  space in 
MOLGEN fall into this category. 
 
 
 
 
 
 
 



APPENDIX 2 - THE TOOLS OF THE TRADE 
 
The following material is taken from: 
 
          An Overview of Expert Systems 
          W.B.Gevarter 
          National Bureau of Standards, Washington, DC 
          May, 1982    NBSIR 82-2505 
 
          Artificial Intelligence in Business 
          Paul Harmon and David King 
          John Wiley and Sons 
          New York, 1985 
 
 
 
 
LISP 
 
AI is considered a young field, but LISP, its premier programming language, is, 
relatively speaking, an  old-timer.  The only older  programming language still 
in  use  is  Fortran.   While  Fortran  was  designed  primarly  for  numerical 
computation, LISP  was designed primarily  for manipulating  symbols.  Symbolic 
processing languages,  such as LISP, extend  our ability to use  computers from 
the relatively smaller realm  of numeric problems to the larger  realm in which 
we work in words and symbols. 
 
LISP, developed by John McCarthy (now professor of computer science at Stanford 
University) at  the Massachusetts  Institute of Technology  in the  late 1950s, 
stands for LISt Processor.  LISP programs  consist of collections of procedures 
in list form that operate together to accomplish a given purpose. 
 
A LISP  list is a string  of "atoms," the  basic elements that the  system will 
manipulate, enclosed  by parentheses.  A  list can be  empty or can  consist of 
either atoms (such as numbers, symbols, or words) or other lists. 
 
The ease and  power of recursion in  LISP programs are notable.   When you have 
solved a portion of a problem, and  the problem-solving method is applicable to 
the remaining portion of  the problem, LISP allows you to  define a function to 
use itself repeatedly on subproblems. 
 
LISP is a  flexible language that you can  modify for your own  needs.  You can 
write code ranging  from operating systems to high-level programs  in LISP.  In 
fact, LISP itself  can be written in  LISP.  LISP makes no  distinction between 
lists that contain  data and lists that  contain programs.  This makes  it easy 
for  LISP programs  to manipulate  or even  generate other  LISP programs.   In 
addition, it  is possible to integrate  data and information  about procedures. 
 
This integration forms  the basis for sophisticated  "frame" and "object-based" 
systems commonly used in AI applications. 
 
COMMON LISP  is the  de facto standard  LISP and provides  a base  dialect from 
which other implementations can stem for  use on personal computers, commercial 
timeshare computers,  and supercomputers.  For  this reason, COMMON  LISP omits 
features that are useful only on some classes of processors. 
 



 
 
PROLOG 
 
Prolog,  which  was named  for  PROgramming  in  LOGic,  was developed  at  the 
University of Marseilles by Professor Alain Comerauer and his colleagues in the 
early  1970s.   Other  centers  of Prolog  development  have  been  London  and 
Budapest. 
 
Like  LISP, Prolog  was  designed for  the manipulation  of  symbols, and  both 
languages lend  themselves to expressing  predicate calculus logic.   Prolog is 
also  interactive,  like   LISP.   Prolog,  however,  is   characterized  as  a 
relation-processor  rather than  as  a list-processor  like  LISP.  Prolog  was 
intended for use in natural language processing systems, but has also shown its 
usefulness in the areas of computer-aided architectural design, expert systems, 
and database building and query systems. 
 
Prolog  is  designed   in  such  a  way   as  to  automate  search   through  a 
tree-structured  domain or  knowledge base.   Since many  knowledge bases  have 
treelike  shapes, Prolog  has  naturally been  applied  to  language and  query 
applications. 
 
Prolog  shows some  promise  as a  suitable  language  for parallel  processing 
systems now beginning to be developed.  In a masively parallel processor (MPP), 
each node in the  tree structure would be assigned to  a separate processor.  A 
Prolog  application would  propagate through  the  MPP by  passing messages  to 
activate links  to nodes.   In a parallel  processor with only  a few  nodes, a 
Prolog program could assign tasks to processors each time the program reaches a 
branch point. 
 
While LISP has been  the language of choice for artificial  intelligence in the 
United States, Prolog has been the leader in Japan, France, the United Kingdom, 
and Hungary.  One reason may be that Prolog programs are smaller and are easier 
to  read  than equivalent  LISP  programs.   Another  reason is  that  Prolog's 
logic-based   semantics  hold   the  promise   of  helping   to  simplify   the 
representation of  knowledge.  If Prolog  is an  inherently parallel-processing 
language as  many contend, then  it is a good  fit for the  parallel-processing 
computers  the  Japanese  hope  to build  in  their  Fifth-Generation  Computer 
Project. 
 
 
 
EMYCIN 
 
EMYCIN is  the oldest system  building tool in the  AI environment, and  it has 
been moderately successful. 
 
As they  finished their  work, the developers  of MYCIN,  an expert  system for 
diagnosing bacterial infections, realized that there  wer two distinct parts to 
their system:   the knowledge base,  which was specific to the area  of medical 
diagnosis, and the inference engine,  which was a general-purpose back-chaining 
rule evaluator.  This distinction led to  building an empty MYCIN, or EMYCIN--a 
MYCIN without its knowledge base. 
 
EMYCIN is a tool for building  MYCIN-like consultation systems.  EMYCIN expects 
knowledge to be  represented as objects, attributes, values, and  rules in much 



the same  way that  a spreadsheet  program expects  its data  to form  rows and 
columns.  EMYCIN contains all machinery needed  to reason over a knowledge base 
and  to  conduct consultations  with  a  user.   Over  the years,  editors  and 
debugging  aids were  added  to assist  a knowledge  engineer  in building  the 
system.  EMYCIN is a knowledge system without any domain knowledge. 
 
EMYCIN is a tool and not a computing language.  It is less general than LISP or 
INTERLISP, in which it was written.   LISP is a general-purpose list porcessing 
language, whereas  EMYCIN is a  special-purpose O-A-V/rule processor  that uses 
backward chaining. 
 
 
 
OPS5 
 
The OPS5  language was  created by Dr.  Charles L.  Forgy, a  research computer 
scientist at Carnegie-Mellon University, in the  late 1970s for building large, 
forward or backward-chaining, production-based expert systems.  Because of this 
emplasis, OPS5  is not considered  a general purpose  language such as  LISP or 
Prolog.  The  OPS4 version of  the language was  written in LISP.   OPS5, which 
Forgy  wrote to  be  easier  to read  and  maintain,  has had  three  different 
interpreters, written in  BLISS for VAX mainframes, and MACLISP  and Franz LISP 
for smaller computers. 
 
A production system  is a program consisting of  condition/action rules phrased 
in IF...THEN style.   The knowledge base of  an expert system written  in OPS5, 
called  production menory,  consists entirely  of  production rules  expressing 
knowledge about a  problem domain.  OPS5 programs have two  other components: a 
database  called  working  memory  and the  interpreter,  referred  to  as  the 
inference engine, which is the part of the system that selects and executes the 
appropriate rule at each point in processing. 
 
At the start  of the program, the  user enters data and  parameters relevant to 
the current  instance of  the problem  to be  solved into  working memory.   As 
processing  moves along,  working  memory changes  to  reflect new  information 
inferred by the system at each step. 
 
The inference engine evaluates  all of the rules to see  which have IF portions 
that are exactly  satisfied by the current  state of the working  memory.  This 
set of rules  is called the conflict set.   If there are two  or more satisfied 
IF's, the  inference engine  will act  on whichever  one its  built-in protocol 
selects.  This process  is known as conflict resolution.   Examples of conflict 
resolution strategies are "Fire the rule with the most precise (or complex) set 
of  conditions" and  "Fire the  rule that  references the  newest data."   Upon 
conflict resolution, the appropriate rule fires, that is, the THEN portion acts 
to change the  working memory. Because this action changes  the working memory, 
on the next round when the inference engine evaluates rules, there may be a new 
conflict set. 
 
This cycle of  recognizing the appropriate rule  to fire, based on  the updated 
contents of  working memory, and  acting by firing  the rule to  change working 
memory, continues  until a conclusion is  reached; that is, until  the conflict 
set is empty or  a rule halts the program.  The  problem solution or conclusion 
is represented by the final state of working memory. 
 
The flow of control in an OPS5 program  is not determined by the order in which 



the programmer puts the  rules in the system.  Rules become  candidates to fire 
when the "If" statement is satisfied by information in working memory. 
 
In a  conventional programming language, the  order of the instructions  in the 
program is important;  if you have to add  a new instruction to  the system, an 
error in its location can change the entire function to yield a wrong result. 
 
The sequence in  which rules are written  in an OPS5 program  is not important. 
Program execution does not  rely on rules being in any  particular order.  This 
makes adding new information to an OPS5 program relatively easy. 
 
OPS5  is  most often  used  as  a  forward-chaining  language, which  makes  it 
appropriate for expert systems whose solutions can be reached by asking, "Given 
these facts, what follows?"  This mode of  operation has been useful in systems 
like XCON (previously  called R1), the computer  configuration system Professor 
John McDermott  of Carnegie-Mellon  University designed  for Digital  Equipment 
Corporation.   McDermott  also  employed  OPS5 in  MUDMAN,  an  expert  system, 
available  from NL  Baroid of  Houston, for  analyzing problems  related to  an 
oil-well drilling  lubricant. A similar  program, called DRILLING  ADVISOR. was 
developed by  Elf-Aquitaine using  KES-300, a  derivitive of  EMYCIN, described 
earlier. 
 
 
 
ART--THE AUTOMATED REASONING TOOL 
 
The Automated Reasoning Tool (ART) from Inference Corporation is a tool kit for 
knowledge  system development.   The  kit contains  four  major components:   a 
knowledge  language for  expressing  facts and  relationships;  a compiler  for 
converting the knowledge language into LISP;  an applier, which is an inference 
engine; and a development environment, which  includes debugging aids and trace 
functions. 
 
ART is  a very  general tool  applicable to  many problems.   For example,  ART 
supports time tagging within its inheritance functions.  This suggests that ART 
can  be  used  to  build  systems  that  reason  about  time-dependent  events. 
unfortunately, there are no examples of ART  in action in a commercial setting. 
Examples in the ART materials are about very small, "toy" systems. 
 
ART provides a number  of representations to store and maintain  facts.  One is 
the traditional  O-A-V triplet.   A second  means of  representation, called  a 
fact, is  a proposition  with a  truth value  and a  scope.  Quantifiers  (ie., 
"There  exists at  least  one ..."  and  "For all...")  are  supported by  ART. 
Inheritance is represented by logical linkages  among objects and facts.  Also, 
attributes  and values  can  be inherited  by parent  objects  in a  hierarchy. 
Prototypical classes  can be defined  with default  values that change  only if 
necessary. 
 
The  inference   engine  or  knowledge  applier   is  described  as   being  an 
opportunistic reasoner.  This  means that ART can reason with  both forward and 
backward  chaining, or  with explicit  procedural commands.   Rules affect  the 
direction   of   inference.   In   this   way   the  inference   engine   moves 
opportunistically, depending on the pattern  of intermediate results.  ART also 
supports confidence  ratings.  Like  all of  the hybrid  tools, ART  is a  very 
powerful programming environment that can, in  the hands of a skilled knowledge 
engineer, be made to perform in a variety of different ways. 



 
ART has a wide  variety of interface features, all oriented  toward helping the 
knowledge engineer develop an expert system.   The tool is flexible enough that 
a skilled knowledge engineer  can ues ART to develop whatever  usr interface is 
desired. 
 
ART  is written  in  LISP and  runs  on  LISP machines  produced  by Xerox  and 
Symbolics.   ART  is   available  from  Inference  Corporation,   Los  Angeles, 
California.  An initial copy costs $60,000; a  second copy can be purchased for 
$20,000.  ART can be leased for $1000 per month, or for $3000 per month with an 
option to buy it at the end of six months. 
 
 
 
 
KEE--THE KNOWLEDGE ENGINEERING ENVIRONMENT 
 
The Knowledge Engineerng Environment (KEE) is an integrated package of software 
tools available  from IntelliCorp (formerly IntelliGenetics).   IntelliCorp was 
the first knowledge engineering company, founded in 1980, and its original goal 
was to market  genetic engineering software.  In August  1983 IntelliCorp began 
selling  KEE,  a hybrid  tool  derived  from  its  work with  genetic  engineer 
software.  KEE, is  therefore, a tool that was originally  derived from complex 
analysis and planning  applications.  An enhanced version of  KEE was announced 
in August 1984. 
 
KEE  has been  used  to  build a  number  of  widely used  genetic  engineering 
knowledge systems.   These systems offer advice  about the design  of molecular 
genetics  experiments.   KEE  has  also been  used  to  develop  an  integrated 
interface to  a nuclear  magnetic resonance  spectrometer, an  application that 
demonstrates that KEE can be embedded  in laboratory equipment.  KEE is popular 
with several R&D  groups that are currently working  on prototype applications. 
Arthur D. Little  Co., for example, is  working with several of  its clients to 
develop KEE-based planning applications. 
 
KEE's basic representational paradigm is frames, which unify the procedural and 
declarative expressions  of knowledge.   KEE is  an example  of object-oriented 
programming.  Facts and rules in KEE are  represented as objects or frames that 
have  labled slots  containing either  values  or means  for obtaining  values. 
Slots  can contain  a  number of  different  entities.  A  slot  may contain  a 
procedural attachment, that is, a set of  instructions that compute a value for 
a slot.  Similarly, a slot may contain a  set of rules that conclude values for 
other slots in the frame.  Procedural knowledge  can also be inserted in a slot 
as a  LISP program.  A slot  may also point  to another frame and  indicated an 
inheritance relationship. 
 
Redundant  information entry  is  minimized  with inheritance  hierarchies.   A 
knowledge engineer can build a knowledge base hierarchy by initially specifying 
generic objects and their attributes.  Then, when specific objects are created, 
they  will automatically  inherit  attributes of  the  generic  objects in  the 
knowledge base.  As a  result, the knowledge engineer needs to  focus on only a 
nominal number of unique attributes for each new object. 
 
KEE  integrates frame-based  and rule-based  reasoning  techniques to  describe 
structures and behaviors quickly. The frame-based system enables one to include 
descriptive  and procedural  knowledge with  each  object.  KEE  allows one  to 



define class member  and subclass relatiopnships so  that each link type  has a 
uniform semantic interpretation throughtout a knowledge base. 
 
Because  user  interface commands  run  as  separate processes,  the  knowledge 
engineer can  change the value  of any attribute of  any object while  the rule 
system is running and can also browse  through and display different objects in 
the knowledge base.  Rules and objects can be easily identified and enhanced to 
improve the system's performance. 
 
Graphics  are linked  to  the underlying  knowledge base  to  help explain  the 
representation, reasoning,  and behavior  of a  knowledge system.   Using KEE's 
graphics editor menus, the knowledge engineer  can design and construct graphic 
models  of physical  objects  such as  meters and  gauges  to monitor  specific 
values. In  the tradition of  object-oriented programming, frames  (as objects) 
communicate with  one another by  sending messages  to one another.   A message 
might be a request to display information or to execute a set of rules. 
 
The inferencing  scheme for  KEE is quite  flexible.  It  can be  programmed to 
behave  as  a back-chainer  or  a  forward-chainer.   Values  in slots  can  be 
manipulated,  and  results  ripple  throughout the  logical  structure  of  the 
knowledge base.  Such values are called active values. 
 
There  is no  sharp  distinction between  the  consumer and  creator  of a  KEE 
knowledge base.  This is just another way of saying that KEE is a hybrid system 
that requires considerable sophistication on the part of the knowledge engineer 
or user.  The  user interface provides a  number of graphics features  that aid 
the knowledge engineer in the development and debugging of a knowledge system. 
 
For example, when the knowledge base does  not contain information on the state 
of an attribute, and there are no rules enabling the system to determine values 
from other knowledge, the system will prompt  the user for an answer. The user, 
in turn, can ask the system why it needs to know, and see the line of reasoning 
leading to the questions.  The line of reasoning for any set of conclusions can 
be shown graphically, so  the user can determine how a  conclusion was reached. 
A graphics display  of the decision process adds credibility  to decisions that 
are correct and visibility to decisions that are not. 
 
KEE is a hybrid system and therefore can be extended by the knowledge engineer. 
Many of KEE's functions  are defined by KEE System Knowledge  Bases.  Thus, the 
same processes used to build a knowledge  system can also be used, for example, 
to modify existing inheritance rules or create new ones. 
 
KEE is supported by IntelliCorp in  several ways.  A three-day training program 
is standard  and further support is  available after an application  project is 
underway.  In addition, on-site consulting by an IntelliCorp knowledge engineer 
is included with purchase of the tool. 
 
KEE is  implemented in  LISP and is  available on the  Xerox 1100  machine, the 
Symbolics  3600 machine,  the  LMI LAMDA,  and  the TI  Explorer.   KEE can  be 
purchased from IntelliCorp for $60,000.  The cost declines rapidly for multiple 
copies. 
 
 
 
 
LOOPS 



 
LOOPS is a  knowledge engineering environment developed at the  Xerox Palo Alto 
Research Center  (Xerox PARC).  LOOPS  is a  software tool that  incorporates a 
variety of different  knowledge engineering constructs in  one unified package. 
The constructs include object-oriented programming, the  use of active value, a 
knowledge base management scheme, and a rule package. 
 
A great number of the features of LOOPS are related to support available in the 
INTERLISP environment.   For example, it is  possible to review  programs under 
development in  LOOPS with a variety  of graphical schemes.  These  schemes are 
essentially schemes  provided by INTERLISP  by means  of its windows  and break 
packages.  After a rule is fired, it is  possible to examine what the rule was, 
what the  effect was,  waht the  effect of its  firing was,  and to  trace down 
aspects of reasoning that take place during a program's execution. 
 
A second construct  incorporated in LOOPS is  the idea of an  active value.  An 
active value operates like a probe.  By  examining an active value, one can see 
the current status of a variable being  reasoned about.  By attaching a graphic 
picture, such as a  gauge or thermometer, one can see  an analog representation 
of a variable that is being reasoned  about.  Moreover, one can monitor changes 
in that value as  processing continues .  By changing an  active value, one can 
view a series of side effects associated with that value's changing. 
 
Object-oriented programming is an orientation toward  viewing the entities in a 
program as objects  (or units or frames)  that communicate with each  other via 
messages.   Attached to  eack  frame are  constructions  and declarations  that 
define and  elaborate what  the frame is  about.  When a  message arrives  at a 
frame, attachments to that frame process the message and carry out its effects. 
 
Prodecural  and rule-oriented  programming  is also  supported  by  LOOPS in  a 
conventional way.  The unique aspect of having  rules and procedures as part of 
LOOPS comes not  from the procedures as  such but from how  they are integrated 
with active values and object-oriented programming. 
 
Perhaps LOOPS should  be thought of as  an environment rather than  a tool.  In 
order to build an  expert system with LOOPS, one must choose  from a variety of 
different approaches and write  a fair amount of code before  the system begins 
to home  in on  and help  to structure  the knowledge  system.  Its  utility is 
primarily  as a  software engineer's  environment,  where a  variety of  useful 
subroutines  have  been  prepared  and  are ready  to  assemble;  and  that  is 
strikingly different than  a tool such as  S.1, where a large  number of design 
decisions have already been made and are "hard-wired" into the system. 
 
Xerox PARC has offered a three-and-a-half  day course to teach parrticipants to 
use  LOOPS.   The  course  is  built around  a  game  called  "Truckin."   Each 
participant develops  a program to  manage a  "truck."  Then the  various truck 
programs compete to buy and sell commodities  and avoid the hazards of the road 
in a simulated environment. 
 
LOOPS is  implemented in INTERLISP and  runs on Xerox 1100  LISP-based personal 
workstations.  LOOPS  is available fromm Xerox  for $300 !!! in  an unsupported 
version.   Xerox apparently  regards  LOOPS simply  as a  research  tool and  a 
powerful demonstration of what the 1100 series of LISP work-stations can do. 
 
 
 



 
EXPERT 
 
EXPERT is a tool for designing  and building consultation systems.  It paradigm 
is   the  diagnosis/prescription   model   (which   its  developer   call   the 
classification model).  EXPERT was built by Sholom Weiss and Casimir Kulikowski 
of Rutgers University.   These two individuals have used the  system to develop 
several large and small knowledge systems. 
 
The three  examples that  we outline below  are described in  detail in  a book 
written by  EXPERT's creators,  A Pracical  Guide to  Designing Expert  Systems 
(1984): 
 
- Serum protein diagnosis program.  This  knowledge system examines profiles of 
data  from a  spectrum analyzer.   It classifies  the profiles  and selects  an 
appropriate diagnosis  to display.  The system  was build with EXPERT  and then 
recoded into assembly languagee to be stored in a read only memory (ROM).  This 
ROM is  installed in the spectrum  analyzer.  The instrument plots  the profile 
and prints an interpretation. 
 
- Another, Larger system built with EXPERT is a rheumatic disease consultant. 
 
- EXPERT has been used to develop a  log analysis system for oil drilling.  The 
system is  called ELAS  and was  developed for Amoco  as a  front end  to their 
interactive  log analysis  package.  Details are  described  elsewhere in  this 
report. 
 
EXPERT stores  facts as  attribute-value pairs.   Facts are  classified in  two 
ways:  as findings or hypotheses.  Findings  are observational data coming into 
the system.  Hypotheses are  potential solutions, one or more of  which will be 
selected by the system.  Relationships and  heuristics are stored as production 
rules grouped in three categories: 
 
-  "F-F" rules that link a finding with other findings, 
-  "F-H" rules that relate findings to hypotheses, and 
-  "H-H" rules that link one hypothesis with other hypotheses. 
 
In the  ordinary course of  a consultation,  incoming data are  interpreted and 
refined with F-F rules.  The consolidated  description of the findings are then 
related to the  set of possible solutions with F-H  rules.  Finally, hypotheses 
are refined using the H-H rules. 
 
The inference  engine for EXPERT  is questionaire-driven.  Findings  are sought 
one after another before the system begins to reason.  After all information is 
obtained, rules  are fired  in the following  order:  F-F,  F-H, and  then H-H. 
Thus, EXPERT is  not a back-chainer.  Control  is established by the  order and 
category of the rules. 
 
The system  is able  to reason  with incomplete,  and incomplete  and uncertain 
data. A belief measure ranging from -1 to 1 is associated with facts. 
The user interface is very simple.   Questions are asked, answers are obtained, 
the reasoning process takes place, and an answer is given. 
 
From  the  knowledge  engineer's  perspective,  EXPERT  is  a  batch-processing 
knowledge system  tool.  There is  no interactive  editor, nor are  there other 
software aids for building knowledge bases.   Trace facilities are available at 



runtime to assist in debugging. 
 
Statistical  functions  are available  to  examine  how  much a  rule  improves 
performance.  Modifying  a rule changes the  system's overall performance  on a 
set of cases.  Errors occur in  two ways:  false-positive diagnoses (cases that 
EXPERT judges faulty  but are not) and false-negative ones  (cases where EXPERT 
fails to locate fault that is  present).  EXPERT's statistical functions assist 
the system designer in tuning the performance of the system. 
 
EXPERT  is written  in  FORTRAN and  is  available for  a  number of  different 
operating systems  and many types  of hardware.   Interfaces to data  bases and 
sensors are  supported by FORTRAN.  Acces  to EXPERT is via  Rutgers University 
and is subject to negotiation. 
 
 
 
 
TIMM-THE INTELLIGENT MACHINE MODEL 
 
The  Intelligent Machine  Model  (TIMM) is  a  knowledge  system building  tool 
designed to  be used  by subject matter  experts.  TIMM  focuses on  cases that 
represent good examples according to the expert.   In effect, TIMM works like a 
more complex version of Expert-Ease.  Each set of examples forms a matrix and a 
matrix  is, in  effect, a  rule.  Each  rule is  created as  the expert  enters 
examples.   Unlike  Expert-Ease, however,  TIMM  enables  several rules  to  be 
created  and linked  together.  TIMM's  example-oriented knowledge  acquiaition 
system makes it  especially appropriate for systems builders who  want to model 
their own expertise.  Several commercial systems have been built using TIMM. 
 
Facts in TIMM are represented as  attribute-value pairs.  Rules are not entered 
directly but, rather, are build from  stylized examples.  That is, examples are 
entered as a set of conditions (attributes)  related to a particular outcome or 
recommendation.  TIMM  is able to consolidate  and generalize rules based  on a 
set of  cases.  TIMM  is capable  of storing about  500 rules.   It is  able to 
handle  problems   that  require   a  system  to   choose  among   25  distinct 
recommendations based  on some  50 factors,  each of  which can  have up  to 25 
different values. 
 
TIMM does not support associations and inheritance relationships, nor are there 
explicit ways of controlling the flow of a consultation.  Inference and control 
decisions are  made by an  algorithm that optimizes  a path through  a decision 
tree that TIMM creates from the examples and rules it is given. 
 
Inexact and incomplete information  is handled in two ways.  First,  there is a 
certainty factor between 0  and 100 associated with facts.  Second,  there is a 
reliability number, also  ranging from 0 to  100, that is associated  with each 
set of examples  and their conclusions.  Thus,  TIMM can report a  soluton with 
certainty 50 and reliability 80. 
 
In the case of TIMM, the knowledge  system designer is a subject matter expert, 
not a  knowledge engineer.   Here is  how a  knowledge system  building session 
proceeds: 
 
- TIMM interogates  the expert about what  attributes matter with respect  to a 
particular domain.  Ranges of acceptable values are stored. 
 



- TIMM requests  that outcome or result  for an example in  the problem domain. 
It then probes to  see what values are associated with  the attributes for that 
case. 
 
- TIMM  generalizes rules  and optimizes  a decision  tree based  on the  cases 
generated by the expert. 
 
TIMM  provides  some  debugging  aids  for  the  system  builder.   One  is  an 
explanation facility, which kdentifies all rules used in a consultation. 
 
A two-day  training course and maintenance  is included in the  price.  Support 
services, 25  user's manuals,  and on-site installation  is also  provided with 
each purchase.  TIMM is written in FORTRAN.  It is available for many mainframe 
and minicomputers such as IBM, DEC, Prime,  and others.  General Research has a 
personal conputer-based version of TIMM. 
 
TIMM is available  from General Research Corporation.  Version  2.0, capable of 
linking together separate knowledge bases, is priced at $39,500.  The IBM PC XT 
version of  TIMM costs  $9,500.  TIMM is  also offered via  time sharing  for a 
monthly charge of $500 plus computer time. 
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          Exploration 
          R.Duda, J.Gasnig, P.Hart 
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                         TABLE 1   EXPERT  SYSTEM  TOOLS 
 
  System Name       Available On     Language       Supplier 
 
Small Systems 
AL/X                  Apple II       Pascal         U. of Edinburgh 
                                                    Edinburgh, Scotland 
 
ESP Advisor           IBM PC         Prolog         Expert Systems 
                                                    King of Prussia, PA, 19406 
 



Expert/Ease           IBM PC         Pascal         Expert Software 
                      DEC Rainbow                   San Francisco, CA, 94114 
 
EXSYS                 IBM PC         C              EXSYS Inc. 
                                                    Albuquerque, NM, 7194 
 
Insight               IBM PC         Pascal         Level 5 Research 
                      DEC Rainbow                   Melbourne Beach, FL, 32951 
 
M.1                   IBM PC         Prolog         Teknowledge 
                                                    Palo Alto, CA,94301 
 
OPS5+                 IBM PC         C              Artelligence 
                                                    Dallas, TX, 75240 
 
Personal Consultant   IBM PC         C              Texas Instruments 
                      TI PC                         Dallas, TX, 75380 
 
Series-PC             IBM PC         Lisp           SRI International 
                                                    Menlo Park, CA, 94025 
 
Medium Systems 
Expert                IBM            Fortran        Rutgers University 
                                                    New Brunswick, NJ, 08903 
 
KES                   IBM PC         Lisp           Software A&E 
                      DEC VAX                       Arlington, VA, 22209 
                      Apollo, Xerox 
                      Symbolics 


