
MEMO A:\AIR&D\TECHPAPR

 A PRIMER ON
 ARTIFICIAL INTELLIGENCE and EXPERT SYSTEMS
 IN THE PETROLEUM INDUSTRY

 E.R.Crain, P.Eng.
 D&S Petrophysical, a Division of
 D&S Petroleum Consulting Group Ltd
 Calgary, Alberta
ABSTRACT

This report is a condensation of the pertinent available literature with
respect to artificial intelligence and expert systems which might be of some
interest to people within the oil and gas industry. It has been prepared with
the view to design and implementation of an expert system for log analysis,
based on our proprietory log analysis package, LOG/MATE ESP. The examples used
in this report have been phrased in log analysis terms to aid understanding by
practioners of this arcane black art.

The report covers the following topics:

 Introduction to Artificial Intelligence
 What Is An Expert System ?
 When and Where are Exprt Systems Used ?
 Using an Expert System
 The Knowledge Base
 The Inference Engine
 A Not So Trivial Example
 Problem Solving Techniques
 Languages and Tools
 Petroleum Industry Examples
 Drilling Advisor
 Prospector
 Dipmeter Advisor
 Expert Log Analysis System ELAS
 Mudman
 Some Observations on the Conventional Wisdom

 Appendix 1 - Definitions of Inferencing and Search Techniques
 Appendix 2 - Tools of the Trade
 Appendix 3 - Bibliography

No great attempt has been made to be original. Much of the report is condensed
from material listed in the Bibliography.

This material, along with the general articles in the Bibliography, will
provide sufficient grounding in expert systems terminology for anyone who
wishes to become familiar with the subject. Unfortunately, even this
condensation is rather lengthy, amounting to some 40 typewritten pages, gleaned
and winnowed from over one thousand pages of carefully selected material.
Clearly there is much more, including a three volume, 2000 page Handbook of
Artificial Intelligence, numerous other major works, plus the transactions of a
dozen or more symposia, and the usual plethora of technical journals, published

monthly since 1955.

In the petroleum industry, well log analysis, property evaluation, reservoir
simulation, drilling operations, and geologic interpretation have been attacked
with AI techniques. Only limited forms of geologic interpretation, log
analysis and drilling hydraulics have received any significant attention,
however.

The balance of this article provides an overview of expert systems from the
petroleum applications point of view, provides definitions of the relevant AI
terminology, looks at the tools available for creating expert systems, and
reviews progress to date in our industry.

INTRODUCTION

Researchers have worked to develop artificial intelligence for a number of
reasons. One is to help understand the human thinking process by modelling it
with computers. Another is to make better computer hardware by modelling the
computer more closely after the human brain. More achievable goals, such as
making computers act more human or easier for humans to use, are also part of
the AI spectrum, as are robotics and pattern recognition or artificial vision.

Natural language understanding, automatic translation, and automatic computer
programming are other aspects of artificial intelligence.

Until a few years ago, these topics were buried in the academic research
environment. Now robots, expert systems for computer configurations and
dipmeter analysis, as well as many consultative tasks such as medical
diagnostics, are available commercially from the AI community. One pundit once
explained that "If it works, it's not AI". This is no longer true.

The distinctions between conventional programming, intelligent programming, and
artificial intelligence are not hard and fast. Conventional programming uses
procedural languages such as Basic or Fortran to create sequential code to
solve explicitly stated problems. Intelligent programming goes one step
further. Here data bases are used to hold much of what would otherwise be hard
code. As a result, the system is much more flexible, and program sequence or
content can be modified at will by the user, as can the knowledge contained in
the numeric and algorithmic sections of the data base.

Artificial intelligence software uses a process called symbolic processing
instead of linear processing of variables in sequence. Although conventional
computing uses symbols (variables) in describing the program, the symbols are
not really manipulated by the operating system to create new symbols,
relationships, or meanings. In artificial intelligece, new relationships
between symbols will be found, if they exist, that were not explicitly stated
by the programmer. In addition, symbols without values can be propagated
through the relationships until such time as values become available, again
without help from the programmer. Anyone who has had a divide by zero error
while testing a program will appreciate this feature.

One of the most economically attractive facets of AI is expert systems
development. Expert systems apply reasoning and problem solving techniques to

knowledge about a specific problem domain in order to simulate the application
of human expertise. Expert systems depend on knowledge about the particular
specialty or domain in which they are designed to operate. The knowledge is
provided by a human expert during the design and implementation stage, hence
the name expert system. Such programs most often operate as an intelligent
assistant or advisor to a human user.

The term expert system sometimes has unhappy connotations, such as a computer
that is smarter than a human, so the phrase knowledge based system may be used
instead. I believe the human ego is strong enough to withstand the label expert
system when applied to a computer program.

WHEN AND WHERE ARE EXPERT SYSTEMS USED ?

The uses of expert systems are virtually limitless. The can be used to:

 - diagnose
 - monitor
 - analyze
 - interpret
 - consult
 - plan
 - design
 - instruct
 - explain
 - learn
 - conceptualize

Thus they are applicable to:

 Military and Space Systems
 - weapon systems
 - target identification
 - electronic warfare
 - adaptive control
 - mission planning
 - monitoring
 - tracking and control
 - communication
 - signal analysis
 - command and control
 - intelligence analysis
 - targeting

 Industry and Education
 - design
 - planning
 - scheduling
 - control
 - instruction
 - testing
 - diagnosis

 - monitoring
 - maintenance
 - repair
 - operation

 Professions and Consulting (law, medicine, engineering, accounting, law
 enforcement, software design)
 - image analysis
 - interpretation
 - instruction
 - data and text analysis
 - specification
 - design
 - verification
 - maintenance
 - diagnosis
 - treatment

Expert systems are feasible where:

 1. there is a high payoff relative to the effort needed to create the
 system,

 2. the problem can only be solved with the help of an expert's
 knowledge,

 3. an expert is available who is willing to formalize his knowledge,

 4. the problem may have more than one rational acceptable answer,

 5. the problem, solution, and input data descriptions change rapidly
 over time or space,

 6. the problem is never fully defined.

In the petroleum industry, well log analysis, property evaluation, reservoir
simulation, drilling operations, and geologic interpretation satisfy the above
criteria. Only limited forms of geologic interpretation, log analysis and
drilling hydraulics have received any significant attention to date.

WHAT IS AN EXPERT SYSTEM ?

Edward A. Feigenbaum, a pioneer in expert systems, states: "An expert system
is an intelligent computer program that uses knowledge and inference procedures
to solve problems that are difficult enough to require significant human
expertise for their solution. The knowledge necessary to perform at such a
level, plus the inference procedures used, can be thought of as a model of the
expertise of the best practioners of the field."

Thus, an expert system consists of:

1. a knowledge base of domain facts and heuristics associated with the
 problem,

2. an inference procedure or control structure for utilizing the knowledge
 base in the solution of the problem, often called an inference engine,

3. a working memory, or global data base, for keeping track of the problem
 status, the input data for the particular problem, and the relevant history
 of what has been done so far.

Figure 1 shows a block diagram of an idealized expert system.

The knowledge in an expert system consists of facts and heuristics. The facts
consist of a body of information that is widely shared, publicly available, and
generally agreed upon by experts in a field. The heuristics are mostly
private, little discussed rules of good judgement that characterize
expert-level decision making in the field. The rules may be difficult for the
expert to verbalize, and hence are difficult to elicit or share. Some facts
and/or heuristics may be proprietory to the user or user's organization, and
are thus not shareable outside the organization.

In fact, one of the major uses of expert systems in business is to capture a
corporation's overall knowledge base as embodied in the brains of their senior
technical and executive staff. The rationale is that the expert system will not
retire, get sick, die, or take trade secrets to a competitor.

As an example, the facts in an expert log analysis system are the known
properties of rocks and fluids. The heuristics include mathematical rules such
as Archie's water saturation equation, as well as usage rules which describe
when this equation might be used in achieving the desired results. The
inference engine in a conventional log analysis program is the procedural code
created by the programmer. It can make only limited, predetermined types of
decisions, and cannot reason or show why it took a particular path. An expert
system overcomes these drawbacks to conventional programming.

As a prelude to further work on AI in log analysis, these facts and heuristics
have been consolidated by the author into a textbook called "The Log Analyst's
Handbook", to be published in early 1986 by Pennwell Publishing, Tulsa, OK.
The layout and content of the book were specially designed with AI research in
mind. However, additional facts, historical fact/result sets, and unspoken
heuristics will have to be extracted before a detailed expert system design
could be attempted.

When the domain knowledge is stored as production rules, the knowledge base is
often referrred to simply as the rule base, and the inference engine as the
rule interpreter. It is preferable, when describing real problems, to separate
the factual knowledge in the knowledge base into a fact or historical data
base, and the heuristics on how to use the facts into a rule base. The two data
bases, the rules and the facts, comprise the knowledge base. The reason for
this is that facts change rapidly in time and space and heuristics evolve more
slowly. Thus some logical separation is desirable. However, this terminology
might confuse some AI practitioners, unless these definitions are clearly
established.

A human domain expert usually collaborates with a knowledge engineer and a
programmer to develop the knowledge base. The synergy between these people is

important to the success of the project. The performance level of an expert
system is primarily a function of the size and quality of the knowledge base
that it possesses.

It is usual to have a natural language interface to communicate with the user
of the system. Menu driven systems are also practical and offer considerable
cost advantages, as well as ease of user training. Normally, an explanation
module is also included, allowing the user to challenge and examine the
reasoning process underlying the system's answers.

An expert system differs from more conventional computer programs in several
important respects. In an expert system, there is a clear separation of
general knowledge about the problem from the system that uses the knowledge.
The rules forming a knowledge base, for example, are quite divorced from
information about the current problem and from methods for applying the general
knowledge to the problem. In a conventional computer program, knowledge
pertinent to the problem and methods for utilizing it are often intermixed, so
that it is difficult to change the program. In an expert system, the program
itself is only an interpreter and ideally the system can be changed by simply
adding or deleting rules in the knowledge base.

Not all modern software is as clumsy to change as suggested above. Our existing
LOG/MATE ESP log analysis/geological/engineering workstation is designed along
AI lines, by separating the data that drives the plot, print, and compute
modules from the interpreters which create the result.

USING AN EXPERT SYSTEM

There are three different ways to use an expert system, in contrast to the
single mode (getting answers to problems) characteristic of the more familiar
type of computing. These are:

 1. getting answers to problems -- user as client,

 2. improving or increasing the systems's knowledge -- user as tutor,

 3. harvesting the knowledge base for human use -- user as pupil.

Users of an expert system in mode (2) are known as domain specialists or
experts. It is not possible to build an expert system without at least one
expert in the domain involved in the project.

An expert system can act as the perfect memory, over time, of the knowledge
accumulated by many specialists of diverse experience. Hence, it can and does
ultimately attain a level of consultant expertise exceeding that of any single
one of its "tutors." There are not yet many examples of expert systems whose
performance consistently surpasses that of an expert. There are even fewer
examples of expert systems that use knowledge from a group of experts and
integrate it effectively. However, the promise is there.

To accomplish this task, an expert system must have a method for recognizing
and remembering new facts and heuristics while the system is in use, and for
gracefully forgetting those which are inconsistent, incorrect, or obsolete. At

the moment, most expert systems require that such changes be made off-line from
actual program execution.

THE KNOWLEDGE BASE

Knowledge representation in the knowledge base is an important aspect of expert
system design. The three major forms of knowledge representation are production
rules, frames, and semantic sets. The different methods are used for different
data types and data uses. Production rules are used where IF...THEN statements
define the knowledge adequately. Frames are used to represent descriptive and
relational data that cluster or that conform to a stereotype. Semantic sets are
most useful for defining classifications, physical structures, or causal
linkages.

The most popular approach to representing the domain knowledge needed for an
expert system is by production rules, also referred to as SITUATION-ACTION
rules or IF-THEN rules. Thus, a knowledge base may be made up mostly of rules
which are invoked by pattern matching with features of the problem as they
currently appear in the global data base. A typical rule for a log analysis
system might be:

 IF matrix density is greater than sandstone matrix density
 AND lithology is described as shaly sand
 THEN suspect a heavy mineral OR cementing agent
 OR suspect inadequate shale corrections
 OR suspect poor log calibrations

Most conventional log analysis programs contain checks and balances of this
type, coded in Basic or Fortran, with appropriate action being dictated by user
defined logic switches. The virtue of an expert system knowledge base is that
the expert can modify this rule set with comparative ease, compared to a hard
coded program. LOG/MATE ESP contains these rules in a user accessable data
base, so the same change can be implemented easily also. In this case, the rule
must be formulated mathematically, although the output may be a text message
similar to the ACTION part of the rule described above.

The knowledge base may also contain large amounts of quantified data or
algorithms which help quantify data. In the petroleum industry, such data may
represent the physical and chemical properties of rocks and fluids, or costs
and income data for different production environments, or predictive equations
which quantify empirical and well accepted rules of thumb. Equations which
predict porosity from sonic travel time or production rate from exponential
decline are well known examples.

In the petroleum environment, it is inconceivable that an expert system could
be successful without extensive information of this type in its knowledge base.
Much of our rule base consists of empirical rules of thumb which have been
quantified by many experts, and used by larger numbers of practitioners.

This information can be gleaned from literature search, from review of input
data, analysis parameters, and comparison of ground truth versus output from
prior work, and from manipulation of known data using the laws of physics and
chemistry. Thus, a large fraction of the knowledge base does not come directly
from the brain of a single expert, but is really a digest of the reference

material he would use while performing his analysis. This information is
sometimes called world knowledge, but it is still very specific to the domain
in question.

Most existing rule-based systems contain hundreds of rules, usually obtained by
interviewing experts for weeks or months. In any system, the rules become
connected to each other by association linkages to form rule networks. Once
assembled, such networks can represent a substantial body of knowledge,
although some of it may be incomplete, contradictory, fuzzy, or plain wrong.

In LOG/MATE ESP, we call these networks by the generic label of ROUTINE, which
is an assemblage of individual algorithms connected by conditional branching
logic. The routine, with its associated computation parameter files and raw
data records, constitutes the specific rule network which will be used on this
data set. Unfortunately, the network must be created manually, usually by an
expert, and tuned for each subsequent use, usually by a low level user with or
without the guidance of a human expert.

Although LOG/MATE ESP has an extensive rule base, and can have an extensive
knowledge base as well, it is not yet an expert system because it cannot
perform any reasoning - it cannot chose the most likely rule network to use for
a particular problem. A diagram of the data base for LOG/MATE ESP is shown in
Figure 2; it has been especially designed to contain rules, facts, global data,
input data, and answers, in anticipation of adding or interfacing an
inferencing technique to the system.

An expert usually has many judgemental or empirical rules, for which there is
incomplete support from the available evidence. In such cases, one approach is
to attach numerical values (certainty factors) to each rule to indicate the
degree of certainty associated with that rule. In expert system operation,
these certainty values are combined with each other and the certainty of the
problem data, to arrive at a certainty value for the final solution. Fuzzy set
theory, based on possibilities, can also be utilized.

Often, beliefs are formed or lines of reasoning are developed based on partial
or errorful information. When contradictions occur, the incorrect beliefs or
lines of reasoning causing the contradictions, and all wrong conclusions
resulting from them, must be retracted. To enable this, a data-base record of
beliefs and their justifications must be maintained. Using this approach,
truth maintenance techniques can exploit redundancies in experimental data to
increase system reliability.

THE INFERENCE ENGINE

As indicated earlier, an expert system consists of three major components, a
set of rules, a global data base and a rule interpreter. The rules are
actuated by patterns, (which match the IF sides of the rules) in the global
data base. The application of a rule changes the system status and therefore
the data base, enabling some rules and disabling others. The rule interpreter
uses a control strategy for finding the enabled rules and deciding which rule
to apply. The basic control strategies used may be top down (goal driven),
bottom up (data driven), or a combination of the two that uses a
relaxation-like convergence process to join these opposite lines of reasoning

together at some intermediate point to yield a problem solution.

The rule interpreter, or control strategy, is often called the problem solving
paradigm or model in the AI literature. Other terms used are the inference
engine, the solution protocol, reasoning, or deduction.

The essential difference between conventional programming and expert systems is
this ability to reason or deduce; to take alternate paths, not based on
pre-ordained switches, but based on logical rules and the current state of the
global data base.

The problem-solving model, and its methodology, organizes and controls the
steps taken to solve the problem. One commonplace but powerful model involves
the chaining of IF-THEN rules to form a line of reasoning. If the chaining
starts from a set of conditions and moves toward some possible remote
conclusion, the method is called forward chaining. An example might be building
a custom tailored minicomputer, in which a list of desired features leads to a
goal of a complete detailed system configuration parts list. Forward chaining
usually is used to construct something.

If the conclusion is known (eg., it is a goal to be achieved), but the path to
that conclusion is not known, then working backwards is called for, and the
method is called backward chaining. For example, a set of botanical
descriptions ought to lead to a species name by backward chaining to find the
set of conditions in the knowledge base which match the plant description at
hand. Backward chaining methods are usually used for diagnostic purposes; they
start from a list of symptoms and attempt to find a cause which would explain
the symptoms.

The problem with forward chaining, without appropriate heuristics for pruning,
is that you would derive everything possible whether you needed it or not. For
instance, the description of a chess game from its possible opening moves
creates an enormous explosion of possibilities. If every elementary particle in
in the universe were a computer operating at the speed of light, the universe
is not old enough to have computed all possible combinations.

Backward chaining works from goals to subgoals The problem here, again without
appropriate heuristics for guidance, is the handling of conjunctive subgoals.
Conjunctive goals are those which interact with each other, and which must be
solved simultaneously. To find a case where all interacting subgoals are
satisfied, the search can often result in a combinatorial explosion of
possibilities too large for real computers.

Thus appropriatre domain heuristics and suitable inference schemes and
architectures must be found for each type of problem to achieve an efficient
and effective expert system. There are no universal, general purpose expert
systems. Further information on these methods can be found in APPENDIX 1.

The knowledge of a task domain guides the problem-solving steps taken.
Sometimes the knowledge is quite abstract; for example, a symbolic model of how
things work in the domain. Inference that proceeds from the model's
abstractions to more detailed, less abstract statements is called model-driven
inference and the problem-solving behavior is termed expectation driven.

Often in problem solving, however you are working upwards from the details or
the specific problem data to the higher levels of abstraction, in the

direction of what it all means. Steps in this direction are called data
driven. If you choose your next step either on the basis of some new data or
on the basis of the last problem-solving step taken, you are responding to
events, and the activity is called event driven.

A NOT SO TRIVIAL EXAMPLE

It was not difficult to think of a knowledge base as described earlier. Many
computer programs already have them. Humans work easily with tables of data or
lists of procedural steps. It is much more difficult to conceive of reasoning
or deduction in a computer program, although the simple examples given above
suggest the possibilities.

Consider the drawing of the three animals in Figure 3. Humans with prior
experience can recognize the difference between them virtually instantly, can
name the species and sex, and guess their approximate ages. Some people may
even be able to tell the breed of the animals. Could an expert system do the
same ?

First, try writing down a list of descriptive features that you know for each
of these three animals. Do not rely solely on the characteristics in the
drawing. Include enough information so that none of these animals could be
mistaken for a zebra or a dog. Then check off on each of your lists the
observable features of each animal in the illustration. Does your checklist
identify each animal uniquely ? Keep improving your list until there is no
doubt. You may need a number of conditional statements, using "AND" and "OR" to
make identification positive, or even some numerical procedures or
probabilities to handle extreme cases.

We have just described the process of extracting knowledge from an expert and
using inferencing to draw conclusions. Backward chaining in an expert system
would check the checklists, and a reasonable pattern match would generate an
answer as to the animal's species, along with a statement as to its probable
chance of being correct.

In this case, to emulate the human brain's ability to do pattern recognition,
we had to resort to a brute force listing of pattern features, a
semi-quantitative description of the animals. Various heuristics would be
needed in a real program to account for the fact that you cannot "see" all
around the animal in a drawing, and must make assumptions about symmetry and
hidden features. After all, this may only be a drawing of a drawing of an
animal, and not a real animal at all,

Now try the animal in Figure 4 on your checklists. Did you identify the animal
right away or did you need further updates to your knowledge base? Did any of
your updates create conflicts or contradictions? This process describes the
"expert as tutor" mode of operation.

Expert systems are not good at pattern recognition from outline drawings such
as these, but do better on quantized lists of facts and relationships as
described in our example. Real pattern recognition is coming - especially in
military and aerospace applications such as target identification and response
strategies.

To complete this exercise, consider the possibility of having more data, such
as X-rays of the animals' skeleton, autopsy and dissection results. or even a
drawing or photograph of other views of the animal. This information would make
identification much easier, and allow the programmer to create many new rules,
and to add to the factual data base.

These sets of extra data are analogous to extra well logs or extra non-log
data, such as core, test, and production history information. Obviously, with
more facts to work on, and more rules to evaluate, an expert system to
determine animal species or the production to be expected from a well, will do
a better job. Thus integration of various disciplines in a common knowledge
base is a natural outcome of expert system research.

PROBLEM SOLVING TECHNIQUES

Different types of experts use different approaches to problem solving.
Knowledge, for example, can be represented in many different ways. Similarly,
there are many different approaches to inference and many differnt ways to
order one's activities (See Appendix 1). Generalized models (paradigms) are
available in the form of system building tools.

A consultation paradigm is a generic conception of a particular type of problem
solving that is common to several different domains. Thus, we refer to one
consultation paradigm as the diagnosis/prescription paradigm. The name derives
from medical problems, such as diagnosing infections and recommending drugs.
Many other medical problems also seem to involve a similar approach to problem
solving. But problems in various nonmedical situations often seem to require
similar expertise; reviewing a set of symptoms, considering various
possibilities, and then recommending actions based on a qualified estimate of
the probable causes. Most petroleum related expert systems use some form of
consultative model.

LANGUAGES AND TOOLS

Tools allow knowledge engineers to construct knowledge systems to help users
solve problems that can be described in terms of one, or at most, a very few
consultation paradigms.

Knowledge representation, inference, and control strategies are specific
software techniques. In some cases one technique, such as certainty factors,
will contribute to a solution for more than one consultation paradigm. On the
other hand, some techniques are strongly associated with particular paradigms.
In general, specific types of problems imply tools that are built up with a
certain set of representation, inference, and control techniques.

There is not, however, a one-to-one match between software techniques and
problems. One programmer may approach a constraint satisfaction problem using
a tool based on backward chaining; another knowledge engineer, faced with the
same problem, might choose a tool that relies on forward chaining. However,
few knowledge engineers would probably choose to use a backward chaining tool

to tackle a complex planning problem, because it is known to be an
inappropriate model.

When choosing a tool, you want to be very sure that the specific tool choosen
is appropriate for the type of problem on which it is to be used.
Unfortunately, since knowledge engineers do not understand how to handle most
of the problems that human experts routinely solve, and since there are only a
few tools available, many types of expert behavior cannot be conveniently
encoded with any existing tool.

Thus in most cases, managers who want to employ knowledge engineering
techniques have a choice. They can focus on problems that are well understood
and ignore those for which there are no available solutions at this time. Or
they can develop a sophisticated knowledge engineering team and try to build a
system by creating a unique set of knowledge representation, inference, and
control techniques in some general-purpose AI language or environment such as
INTERLISP, PROLOG, or perhaps OPS5. This is clearly too expensive for most
small to medium sized companies.

Most companies have decided to focus on solving problems for which there are
already established tools. Given the large number of available problems with
significant paybacks, this is certainly a reasonable strategy. Moreover, even
companies that have decided to develop a team capable of creating unique
knowledge systems have usually built that team while working on some fairly
well-understood problem.

The tools used by the expert system community involve specialized computer
languages and system building tools, as well as specialized hardware
architecture, often called LISP machines after the dominant language used in
the USA. The other popular language, used mostly in Europe and Japan, is
Prolog. Other languages are used in limited areas. The specialized hardware is
not described further in this paper.

The conventional languages, such as Basic and Fortran and many others, have
been successfully used to create expert systems. The AI community tends to
downplay these successes, and insist on using LISP. It should be remembered
that LISP was invented at a time when Fortran could not handle strings of
characters at all. Much invention has since taken place and extended Basic and
other languages handle user defined functions, recursion, and text strings
quite well, all deficiencies which LISP was supposed to overcome. LISP is also
very difficult to read, and programmers often cannot understand or debug each
others code, in contrast with structured extended Basic which can be composed
so as to read well in pseudo English.

In addition to the true languages, the system building tools can be divided
into three groups:

1. Small system building tools that can be run on personal computers. These
tools are generally designed to facilitate the development of systems
containing less than 400 rules and are not discussed further here.

2. Large, narrow system building tools that run on LISP machines or larger
computers and are designed to build systems that contain 500 to several
thousand rules but are constrained to one general consultation paradigm.

3. Large, hybrid system building tools that run on LISP machines or larger

computers and are designed to build systems that contain 500 to several
thousand rules and can include the features of several different consultation
paradigms.

Details of the program languages commonly used for expert system development,
and some of the expert system development environments available commercially,
are described in APPENDIX 2 and listed by type in Table 1.

PETROLEUM INDUSTRY EXAMPLES

The following material is taken from various references, listed in the
Bibliography. It describes the best known petroleum applications in
considerable detail, so as to provide a starting point for discussion and
planning for an expert system for log analysis.

The examples described are:

 1. Drilling Advisor Elf-Aquitaine Figure 5
 2. Prospector Stanford Figure 6
 3. Dipmeter Advisor Schlumberger Figure 7
 4. Expert Log Analysis System Amoco Figure 8
 5. Mudman Baroid No illustration

These systems demonstrate a variety of methods and implementation techniques.

DRILLING ADVISOR

DRILLING ADVISOR is a prototype knowledge system developed for the French oil
company Societe Nationale Elf-Aquitaine (ELF) by Teknowledge Inc. The system
is designed to assist oil rig supervisors in resolving and subsequently
avoiding problem situations. The oil rig supervisor is familiar with the
technology, equipment, and procedures involved in the drilling process, but
occasionally requires assistance when special problems occur.

Normally, an expert is flown to the rig site when such problems occur. Since
it is not unusual for drilling-related expenses to exceed $100,000 per day or
for shutdowns related to special problems to last for several weeks until an
expert can be brought to the site, the savings that an on-rig knowledge system
could effect are considerable.

Teknowledge and Elf agreed to develop a prototype system to solve one specific
problem, down-hole sticking, which occurs when the rotary and vertical motion
of the drill is impeded.

DRILLING ADVISOR was developed by means of a tool called KS300, an EMYCIN-like
tool. Thus, DRILLING ADVISOR is a backward chaining, production rule system,
like MYCIN, that takes full advantage of EMYCIN's user-friendly interface and
knowledge aquisition facilities.

By using KS300, Teknowledge was able to develop the initial problem assessment
and design in a little under three months and was able to develop a prototype
of the drilling advisor sticking system in a little under nine months.

DRILLING ADVISOR has been implemented on two different systems. It can be run
on either a DEC 20 or Xerox 1100 machine.

Currently the knowledge base of DRILLIING ADVISOR consists of some 250 rules.
Approximately 175 of those rules are used in diagnosis, and the other 75 rules
are used in prescribing treatment. Results to date are very encouraging. The
system has successfully handled a number of difficult cases that were not
included in the set used during its development. Current plans call for
extending the capabilities of DRILLING ADVISOR and for integrating it into the
actual drilling environment.

PROSPECTOR

PROSPECTOR has one foot in the world of research and the other in the world of
commercial applications. It was developed in the late 1970's at Stanford
Research Institute (SRI) by a team that included Peter Hart, Richard Duda, Rene
Reboh, K. Konolige, P. Barrett, and M. Einandi. The development of PROSPECTOR
was funded by the U.S. Geological Survey and by the National Science
Foundation.

PROSPECTOR is designed to provide consultation to geologists in the early
stages of investigating a site for ore-grade deposits. Data are primarily
surface geological observations and are assumed to be uncertain and incomplete.
The program alerts users to possible interpretations and identifies additional
observations that would be valuable to reach a more definite conclusion.

PROSPECTOR is, broadly speaking, a descendant of MYCIN, but it was not
developed using the EMYCIN system building tool. In fact, PROSPECTOR has
resulted in a new tool, called KAS. PROSPECTOR goes beyond MYCIN in a number
of important ways. The knowledge base of PROSPECTOR, for example, is based on
a semantic network organized, in turn, around five different geological models.
Each model describes the information and relationships that pertain to a
particular type of mineral deposit. The PROSPECTOR team worked with different
mineral experts to develop the different models.

In effect, assertions are nodes in the network. Typical assertions include:

 "There is pervasively biotized hornblende."

 "There is alteration favorable for the potassic zone
 of a porphyry copper deposit."

Each assertion is either unknown, true, false, or assumed to be true and
assigned some probability. The arcs connecting nodes of the networks are
inference rules. Each rule specifies how the probability of one assertion will
affect the probability of another rule. In effect, PROSPECTOR's inference
rules are the same as MYCIN's production rules. Additional inference rules are
used to establish assertions and to order search.

PROSPECTOR is much more flexible than MYCIN when it interfaces with users. To
begin with, it employs a constrained natural language interface (LIFER) that
allows the user to type sentences just as they would ask questions of a

geological consultant. LIFER interprets the sentences for PROSPECTOR.

In addition, PROSPECTOR is a "mixed-initiative" system. The user can volunteer
information whenever he or she wishes. Thus, one of the major user complaints
about MYCIN is eliminated. The user can begin a session by telling PROSPECTOR
everything known. The user can stop PROSPECTOR whenever desired and provide
additional information. PROSPECTOR immediately inserts the volunteered data
into its inference network and adjusts its strategies and questions
accordingly. The basic control strategy, once the user stops volunteering
information, is backward chaining.

PROSPECTOR can also accept input in the form of raw data and generate a graphic
response. Thus, the user can enter informaiton about a site and PROSPECTOR can
generate a new map showing conclusions about the site.

Once the user has volunteered initial data, PROSPECTOR inserts the data into
its models and decides which model best explains the given data. Further
confirmation of that model then becomes the primary goal of the system, and the
system asks the user questions to establish the model that will best explain
the data. If subsequent data cause the probabilities to shift, of course, the
system changes priorities and seeks to confirm whichever model seems most
likely in light of the additional data.

In 1980, as a test, PROSPECTOR was given geological, geophysical, and
geochemical information supplied by a group that had terminated exploration of
a site at Mt. Tolman in Washington in 1978. PROSPECTOR analyzed that data and
suggested that a previously unexplored portion of the site probably contained
an ore-grade porphyry molybdenum deposit. Subsequent exploratory drilling has
confirmed the deposit and, thus, PROSPECTOR has become the first
knowledge-based system to achieve a major commercial success. The weakest part
of PROSPECTOR's performance was its failure to recognize the full extent of the
deposit it identified.

PROSPECTOR's five models represent only a fraction of the knowledge that would
be required of a comprehensive consultant system for exploratory geology. SRI
continues to develop and study PROSPECTOR, but there are no plans to market the
system. The principal scientists who developed PROSPECTOR and KAS, the expert
system building tool derived from PROSPECTOR, have left SRI to form a private
company (Syntelligence) and Ms. Reboh has taken a position at the University of
Calgary.

Thus, PROSPECTOR, like MYCIN, has never become an operational system. Its
innovations and successes, however, have inspired a large number of knowledge
engineers, and there are a number of commercial systems under development that
rely on one or more of the features first developed and tested during the
PROSPECTOR project.

THE DIPMETER ADVISOR

Unlike fanciful movie images, oil is rarely discovered in gushers that send it
spewing out of the ground. More typically, the discovery and draining of
fields is a painstaking process involving inferred reconstruction of
underground geology. The presence of prehistoric beaches, deltas, and faults
several thousand feet underground are important information suggesting the
likely location of oil-bearing formations.

The reconstruction process is based in large part on measurements provided by a
number of probes called well logs. The probes are lowered into a well and then
slowly retrieved, measuring various physical properties of the rock every few
inches as they ascend, Since a log may be as much as 10,000' long, and may make
many simultaneous measurements, there is a significant amount of data to be
interpreted.

One of the important and widely used probes is the dipmeter, which yields
information about the orientation of rock layers. From its measurements the
inclination, or dip, of the subsurface can be computed. Other commonly used
logs provide measurements from which such properties as rock resistivity and
porosity can be determined.

Interpretation of a dipmeter and related logs requires inferring the presence
of large-scale, three dimensional geologic formations from small-scale,
two-dimensional information about physical properties.

The task is suited to the expert systems paradigm for several reasons. First,
there are recognized human experts who routinely solve the problem, providing
both an acknowledged source of expertise that can be tapped to help build the
knowledge base and a standard by which to judge program performance. Second,
skill at this task is acquired via training and experience. Becoming an
interpreter involves explicit study and the skill is in large measure
cognitive, rather than perceptual. Both of these make it more likely that it
can be captured as a collection of inference steps.

Finally, the domain is at the appropriate stage of development. It is
sufficiently well established that it has a vocabulary of basic concepts and a
collection of informal but useful rules of thumb, but is not yet so well
developed that there is a uniform and reliable general solution method. At this
stage of development a qualitative, symbolic reasoning approach can be very
effective.

Work on this task also has a strong pragmatic motivation. The field of log
interpretation is at present manpower-limited. Given the current emphasis on
exploration, a program capable of high performance on this task would have
considerable utility.

The Dipmeter Advisor system attempts to emulate human expert performance in
dipmeter interpretation. It utilizes dipmeter patterns together with local
geological knowledge and measurements from other logs. It is characteristic of
the class of programs that deal with what has come to be known as signal to
symbol transformation. The program is written in INTERLISP and operates on the
Xerox 1100 Scientific Information Processor (Dolphin).

The system is made up of four central components:

(i) a number of production rules partitioned into several distinct sets
according to function (eg., structural rules vs stratigraphic rules)

(ii) an inference engine that applies rules in a forward-chained manner,
resolving conflicts by rule order

(iii) a set of feature detection algorithms that examines both dipmeter and
open hole data (eg., to detect tadpole patterns and identify lithological

zones)

(iv) a menu-driven graphical user interface that provides smooth scrolling of
log data.

Conclusions are stored as instances of one of 65 token types, with
approximately 5 features/token, on a blackboard that is partitioned into 15
layers of abstraction (eg., patterns, lithology, stratigraphic features).
There are 90 rules and the rule language uses approximately 30 predicates and
functions. The rules have the familiar empirical sssociation flavor. A sample
is shown below. This sample is similar to the actual interpretation rule, but
has been simplified somewhat for presentation.

 IF there exists a delta dominated, continental shelf marine zone
 AND there exists a sand zone intersecting the marine zone
 AND there exists a blue pattern within the intersection

 THEN assert a distributary fan zone

 WITH top = top of blue pattern
 WITH bottom = bottom blue pattern
 WITH flow = azimuth of blue pattern

The system divides the task of dipmeter interpretation into 11 successive
phases as shown below. After the system completes its analysis for a phase, it
engages the human interpreter in an interactive dialogue. He can examine,
delete, or modify conclusions reached by the system. He can also add his own
conclusions. In addition, he can revert to earlier phases of the analysis to
refer to the conclusions, or ot rerun the computation.

1. Initial Examination: The human interpreter can peruse the available data
and select logs for display.

2. Validity Check: The system examines the logs for evidence of tool
malfunction or incorrect processing.

3. Green Pattern Detection: The system identifies zpnes in which the tadpoles
have similar magnitude and azimuth.

4. Structural Dip Analysis: The system merges and filters green patterns to
determine zones of constant structural dip.

+5. Prelimanary Structural Analysis: The system applies a set of rules to
identify structural features (eg., faults).

6. Structural Pattern Detection: The system examines the dipmeter data for
red and blue patterns in the vicinity of structural features. The algorithms
used by the system to detect dip patterns are beyond the scope of this paper.
It is worth noting, however, that textbook definitions do not provide
sufficient specification. The problem is complicatd by local dip variations
and occasional gaps in the data.

+7. Final Structural Analysis: The system applies a set of rules that
combines information from previous phases to refine its conclusions about
structural features (eg., strike of faults).

8. Lithology Analysis: The system examines the open hole data (eg., gamma
ray) to determine zones of constant lithology (eg., sand and shale).

+9. Depositional Environment Analysis: The system applies a set of rules that
draws conclusions about the depositional environment. For example, if told by
the human interpreter that the depositional environment is marine, the system
attempts to infer the water depth at the time of deposition.

10. Stratigraphic Pattern Detection: The system examines the dipmeter data for
red, blue, and green patterns in zones of known depositional environment.

+11. Stratigraphic Analysis: The system applies a set of rules that uses
information from previous phases to draw conslusions about stratigraphic
features (eg., channels, fans, bars).

For the phases shown above, "+" indicates that the phase uses production rules
written on the basis of interactions with an expert interpreter. The remaining
phases do not use rules. The rules obtained to date are due to J.A. Gilreath
of Schlumberger Offshore Services, New Orleans, LA. The feature detectors and
signal processing algorithms were written independently by project members.
The scrolling graphics code was written by Paul Barth. Extensions to the
INTERLISP-D menu package were written by Eric Schoen.

ELAS: Expert Log Analysis System

ELAS is an expert system front end for Amoco's interactive log analysis
package, which runs on an IBM mainframe-terminal configuration. The front end
was written with the EXPERT tool, and is used to prompt a user through the log
analysis steps of the interactive program.

This form of expert system is often called a surface level model. The surface
level model is of the production rule type, whereas the deep model is of purely
mathematical description, expressed as a set of equations. The latter are
implemented as complex software tools, such as reservoir simulators or log
analysis packages.

From a practical applications point of view, well log interpretation represents
an important problem, since it permits an assessment of the likely presence of
hydrocarbons and possible yields of the well during exploration and production.
From the perspective of expert systems research, this application is proving
very helpful in increasing the understanding of representation, communication,
and control processes in multi-level systems. And, from the more general
software engineering point-of-view, we are learning how one might exploit
existing software systems more fully by building a coordinating and advisory
system that makes these programs easier to use by a wider variety of expert and
non-expert users alike.

In many problem areas, it is not unusual to find that valuable software has
already been developed to aid the expert in data analysis, the design of
experiments, and the interpretation of results. These programs are often quite
complex packages, developed over several years and enhanced through extensive
user experience. In designing an expert system, it is only natural that one
should want to take advantage of such software.

One of the first efforts in modeling expert advice on the use of a complex

program was the SACON project which developed an advisory model for the MARC
structural analysis program. However, there was no interaction between the two
programs. SACON was run before the MARC program, giving advice on its
prospective use. In order to develop an expert system to its fullest
potential, interaction is needed between the advising program and the
application programs.

In a sophisticated system, the interpretive program will be fully integrated
with the application programs, so that they communicate their results to one
another, and advice changes dynamically as the model tracks the user
interaction. Furthermore, the system must have the ability to automatically
take a recommended action if the user agrees. In effect, we will have a
program that not only gives advice, but also can accept the advice and act on
it.

A rule based advice model, called ELAS, has been integrated with the existing
Amoco software for well-log analysis. In order to accomplish this task,
original well-log software was reorganized so that its use could be monitored
and controlled. Its representation was structured according to the types and
sequences of methods used by expert analysts. By allowing the user to vary the
assumptions and parameters used in different individual analyses, the system
makes available interactive interpretations of the alternative approaches that
an expert might take to a complex problem of well-log analysis.

ELAS runs on a variety of systems (including IBM's VM/CMS and DEC's VAX/VMS)
using a dual terminal configuration: a graphics and an alphanumeric terminal
with a shared keyboard. The system allows the user to interactively perform
experiments in the analysis of logs. Advice is generated based on the results
of previous experiments, and a running summary is kept of the actions already
taken. The advisory system is based on the EXPERT rule scheme.

To make interaction easy for users, the front end of the ELAS system has, at
its top level, a master panel which holds a snap-shot of the current status of
the analysis of an already selected well. The columns correspond to different
geological zones (by depth) that have been chosen for analysis. The rows
correspond to the parameters for the zones. Initial values for some of the
parameters must be supplied by the user. Many of them, however, may be
obtained through subsequent analysis. Some parameters may stand for specific
tasks that the user might want to invoke to help in the analysis.

Most user-program communication is controlled through this master panel. It is
displayed on the graphics screen and includes a concise set of key parameters
and tasks that are crucial in well-log analysis. A parameter may be aconstant,
a log (represented as a vector of digitized values for each foot of depth in
the well), or an expected characteristic of the well (eg., the presence of gas
in some zone).

There is a superficial similarity to a spreadsheet program, the concept used by
many personal computer programs. In the simpler environment of a spreadsheet,
we see a program that presents information in a concise format and allows the
user to vary a parameter and then watch all dependent results change. ELAS is
faced with a much more complicated computational task, but it tries to show the
propagation of effects that follow from the user's change of a parameter value
or choice of analysis method within as short a time as possible ranging from
almost instantaneous to many seconds. This is accomplished by updating the
master panel, after which the user may invoke more detailed panels or displays

for the specific methods. Changing a parameter may imply quite a large number
of computational steps and not all information can be described in a simple
tabular format.

Upon request, ELAS can provide interpretations and recommendations to the user.
The advice is organized along the topics indicated on the master panel. While
the master panel appears on the graphics terminal, the advice is always given
on the standard terminal so that they may be viewed simultaneously.

ELAS allows the user to direct both the mathematical analysis and the
interpretive analysis by changing parameters or invoking tasks through the
master panel. The outcomes of mathematical analyses that follow are then
reported back to the user through this same panel. The expert system updates
its interpretive analysis after every change in the evidence so that it always
reflects the current status of the panel. The system also synchronizes all
derived logs that are affected by changes in the panel parameters or methods.
Changes are made either through user action or updates in the mathematical
analysis. The user has the freedon to carry out an entire well-log analysis
sequence without ever asking for advice from the system, or advice may be
requested at any stage of the analysis.

To illustrate how different but related mathematical methods of log analysis
are integrated into ELAS, a simplified example of a formula used very
frequently (Archie's equation) is described here. This equation is used for
computing water saturation in a zone of interest. This calculation is
important because once a zone is identified as bearing hydrocarbons, the fluid
present in that zone is a combination of water, oil, and gas. If the amount of
water is known, we can therefore find, by subtraction, the fractions of other
fluids, which would be oil and gas. The parameters in this equation vary
depending on the kind of lithologic formations downhole.

The variables of this equation are quantities that can be changed through the
master panel. A change in any of the variables of this equation involves
recomputation for all feet in the zone, which can be in the thousands. Also,
the system needs to go beyond recomputation; it must reinterpret and revise the
status of its conclusions and recommendations.

An expert analyst usually has heuristics on the use of this equation. These
heuristics suggest that this formula is appropriate for a given situation, or
that other techniques should also be performed if this method is used.
Heuristics also suggest what parameters should be monitored, so that when they
change this equation is re-invoked, and what interpretations should be made
when this equation is used. It is these types of heuristics that are captured
in the production rule model and provide ELAS with its interpretive
capabilities.

Based on the structure of ELAS, a more generalized representation can be
presented for building an expert system in other applications, Making
interpretations of observations and tests is a common activity of expert
systems. However, when these observations are constantly changing, the
interpretation strategy needs to be far more dynamic. This is the scenario in
ELAS, where the integrated package is automatically passing back arguments from
the methods when they are invoked. When an argument is passed, the
interpretations are updated.

Amoco's log-analysis software requires a potential user to have sufficient

knowledge of both the use of this software and the techniques of problem
solving in well-log analysis. ELAS helps provide this expertise. The
integration of the production rules and mathematical methods allows for
explicit representation of rules that monitor the methods. The information
acquired through this monitoring is used to provide dynamic guidance to the
user.

Here are some sample rules in ELAS.

 IF: POROSITY done and SW not done
 THEN: Advise Compute Sw to determine water saturation
 and hydrocarbons in zone.

The above rule represents the type of knowledge that can be classified into a
set of action-recommendation rules that give advice on the appropriateness of
using a method in terms of the user-supplied background data, the
user-performed methods in the analysis, the outcomes of the applied methods,
and incomplete steps in the analysis.

It is very common in well-log analysis to use several related methods in a
specific sequence. Due to the vast amounts of data that quickly accumulate,
from the user and from the results of different methods, it is difficult for a
user to keep track of the correctness and consistency of an analysis sequence.
ELAS keeps track of events by checking through an explicit set of production
rules. The main function of these rules is to monitor and propagate dependency
relations through the analysis, and examine consistency between expected
parameter values and computed parameter values. For example, a user may choose
to perform a certain method, without realizing that specific tasks have to be
carried out to keep the analysis consistent. Production rules are used to
direct these automatic updates, and a typical example is

 IF: Sw successfully computed
 THEN: Perform Sw goodness of fit.

This class of rules is categorized as sychronization rules.

While analyzing a well, a user may go through a complex process of
discriminating neutron and density logs, choosing a parameter called Rw through
an iterative statistical procedure, and selecting a certain porosity log
through a mathematical interpretation model. If one wants to re-invoke the
discrimination task on the density log, the entire chain of subsequent methods
invoked is affected, and the system must make this chain of events consistent
with the change. This is a small example of the many dependencies that exist
in an analysis. Production rules indicate such relations and direct the
propagation of associated changes. One example is as follows:

 IF: WATER_FIT not normal and WATER_FEET more than 20
 THEN: Indicate Bad water zone fit; try and choose alternate
 discriminators using methods A or B.

Production rules are used to compare the expected values of parameters and the
results of applying specific methods. The user has the choice to enter certain
a priori information about the problem, such as whether one ought to expect gas
in the well.

 IF: GAS expected and method C verifies GAS and HYDROCARBON FEET equal 0

 THEN: Indicate Hydrocarbon computation inconsistent with the amount of
 gas detected.

In this case, if we were told to expect gas, and gas is indicated by an
analysis of some of the logs, but the overall analysis of total hydrocarbons
indicates that no gas is present, we then proceed to get clues as to whether
the method of analysis might be at fault, whether the logs are noisy or
otherwise inaccurate, or whether some underlying assumption is unjustified,
etc. These are examples of the kind of checking that is expressed through
consistency rules.

All of these rules are part of a structured production system. This production
rule model is invoked each time a mathematical method is performed. The
control routine of ELAS, using its knowledge about the rules and their purpose,
gathers all the goals concluded by the production rules, and uses them to carry
out the functions of adding interpretations to the problem solution, guiding a
user on what to do next, pointing out inconsistencies, and maintaining internal
consistency by self-performing of dependent actions.

The components of the mathematical methods play a crucial role in ensuring that
all these rules work. In a sense, the real knowledge of the domain lies in
these methods, and a human expert's perspective of these mathematical methods
is used to extract the necessary and sufficient set of parameters from these
methods for the purpose of controlling and intepreting them. We can see that
this is a necessary condition for ensuring that such a system can indeed be
built; an existing software package should be able to be broken down into a set
of methods that can be controlled and interpreted through precise sets of
controlling and observed parameters.

The production rules may be viewed as containing consistency, control, and
interpretive knowledge that is organized around methods of analysis used by an
expert log analyst. This knowledge comes into play if the user invokes that
method, or the state of the analysis indicates the appropriateness of the use
of a method, or if the method is automatically invoked by the system due to a
triggering effect.

ELAS is currently being used in a research environment for formalizing and
integrating knowledge from different experts of Amoco's different regions of
exploration and production. Additional efforts are underway to make available
this form of analysis to Amoco's practicing well-log analysts in the field.

In order to achieve higher performance expert systems, we will likely need to
use representations beyond production rules, such as mathematical and
quantitative methods. These methods may already exist in highly developed
software packages, and in such cases, we can take advantage of the years of
developmental work. For domains where such software packages exist, we have
proposed a hybrid scheme organized around mathematical methods and production
rules. We have successfully implemented ELAS using a domain-specific hybrid
scheme. This structure may prove to be suitable for use in building expert
systems for other domains with similar problem-solving scenarios.

Although there have been attempts to build specific expert systems using
available applications software, there are no general purpose system tools for
these tasks. We are currently examining various approaches to generalizing the
techniques needed for construction of hybrid systems. The hybrid system
appraoch used for ELAS is a pragmatic first step toward the realization of this

goal.

MUDMAN

An example of how AI methods are helping people solve difficult problems in the
commercial sector is NL Baroid's expert system MUDMAN. NL Baroid is a
$400-million-per-year company whose product is drilling mud, a lubricant needed
in drilling oil wells. Baroid invented drilling mud in the 1920s and is now
the largest mud company in the world.

Sometimes when Baroid sells drilling mud to an oil company, it also sells the
services of a mud engineer to stay at the site and solve problems. It takes
about three years to train a mud engineer. Baroid has a knowledge base of over
60 years of mud experience, both in written reports and in the knowledge of mud
experts with 30 to 40 years in the field. They wanted to make that knowledge
available to mud engineers in the field.

When mud engineers call upon personal knowledge to solve a problem, a plausible
mechanism to describe this process is that they search through their memories,
matching the current situation to a previous pattern. Then they may apply
rules of thumb to solve the problem. No conventional algorithms are
universally applicable, so no conventional program can reproduce the needed
expertise and solve the business problem. A system like MUDMAN, however, uses
AI techniques of pattern matching and the application of heuristics, or rules
of thumb, to solve the problem the way an expert would, using this model of the
thinking process.

The inputs to MUDMAN include the specifications of the type of mud needed in a
pareticular well and the chemical and physical properties of the mud that is
actually present. MUDMAN compares the specifications to the actual properties,
provides an analysis of drilling problems, and recommends corrective
treatments.

MUDMAN was developed in a joint effort by Baroid and Professor John McDermott
(acting department head and principal scientist Department of Computer Science,
Carnegie-Mellon University) and associates at Carnegie-Mellon (CMU). The
developers at CMU did the feasibility studies and applied research and, during
the initial joint development period, trained Baroid personnel in AI
techniques. Since CMU turned over the framework for MUDMAN to Baroid in
January 1984, Baroid has had full responsibility for field test, updating,
enhancement, and modificaiton.

MUDMAN wsa specifically designed for sale to Baroid's customers, which are oil
companies. Baroid has described MUDMAN as the first expert system sold as a
commercial product to the oil industry.

SOME OBSERVATIONS ON THE TRADITIONAL WISDOM

The following material is taken from the Schlumberger references on the
DIPMETER ADVISOR. They are extremely candid comments, especially when coming

from the Schlumberger Research group who do not often discuss their internal
failures or politics, even privately. The comments indicate both the learning
curve and disappointment curve during the evolution of the project. It is
reproduced in this report to emphasise the experimental and research nature of
our task, and the necessity of maintaining an open mind and critical attitude
toward all facets of the work.

A common maxim of expert system development is that we should throw away the
code for the Mark-I version of the system as soon as it demonstrates
feasibility and get started on Mark-II. In the commercial environment, there
is great reluctance to throw away code. As a result, a more likely scenario
involves a series of progressive releases of the system to the expert and
possibly to the engineering organization for development and use.

The fact is that even though the knowledge engineer knows all too well the
limitations of Mark-I, and even has ideas on how to overcome them, Mark-I may
still provide some useful service. This is a good illustration of a conflict
that can arise as a result of somewhat different goals of research and of
development in expert systems. The former is concerned with continued
exposition and machine implementation of human expert reasoning methods, while
the latter is concerned with construction of products that utilize already
understood and implemented methods. We do not yet know how to manage this type
of progressive and evolutionary technology transfer. (The problem exists in
conventional program development as well, as we have experienced with LOG/MATE
ESP.)

It is well accepted that expert system development is an incremental process.
Usually we understand this to mean that the performance of the system improves
incrementally. There is, however, another kind of change that may occur;
namely, our experts are themselves moving targets--partially as a result of the
perspective gained through experience in expert system development! This has
been apparent during the Dipmeter Advisor project. For example, we have seen
an increasing geological awareness in our expert dipmeter interpreter. This
has led to a series of changes in the way stratigraphic analysis is handled in
the system. Not all of these changes have proved useful--the expert appeared
to be using the program at times as a test bed for his own evolving ideas.

It is traditional wisdom that the task should be very carefully defined before
the system is designed. Our experience has been that this is quite difficult.
In consonance with our comments on the rapid prototyping development strategy,
it is not clear that task definition can be done in a rigorous fashion. We
suggest a contingent definition--one that is clear for a time, but can be
easily changed. We should note that the evolving performance of the system
itself at least partially fuels changes in the task definition.

It is generally accepted that construction of the Mark-I system should be
commenced as soon as one example of the intended behavior is understood. We
now believe that we spent too much time in knowledge acquisition before
actually starting to build a system. This had the effect of slowing our rate
of progress. We could not move forward in formalizing the knowledge that had
been gained, because we could not demonstrate in concrete terms our
understanding of it.

Some of the development team also deemed themselves to have acquired more
expertise than was warranted. This is a natural tendency. It was partially
due to infrequent interactions with the expert. More responsibility fell on

the shoulders of the knowledge engineers to organize the domain knowledge than
appears prudent. This infrequency also led to a problem of validation--how to
be sure that we were on the right track. On a related note, we can testify to
the necessity of an adequate set of generic examples with which to test the
system as it evolves.

It is common to deal with a single expert during the development of an expert
system. The perceived danger is that it is difficult enough to capture what a
single expert is doing, let alone a number of experts. In the particular
context of dipmeter interpretation, however, it might have been useful to
involve a number of different experts from the outset. We now understand that
there are many schools of thought on the problem. There is also a variety of
perspectives that can be brought to bear on it--dipmeter interpretation
expertise and geological expertise are not necessarily co-located in the same
person.

While the rules for a first approach are most appropriately phrased by a
dipmeter interpreter, we might have been well-advised to obtain the necessary
geological vocabulary and structure from a geologist. In future systems, we
will attempt to synthesize these overlapping points of view.

In a similar vein, we have noted a difficulty that can arise when a single
expert is used and when he provides all examples with which to test the system.
When working with familiar examples our expert does indeed appear to apply
forward-chained empirical rules--kind of compiled inferences. Recently,
however, we have participated in experiments with a number of interpreters (and
examples) from around the world. During these experiments we noted that our
expert resorted to a different mode of operation when faced with completely
unfamiliar examples. He appeared to reason from underlying geological and
geometric models--abandoning the rules.

In some sense, this is of course to be expected. It was instructive, however,
to actually document the change. We believe that dealing with multiple experts
would have provided concrete evidence of this phenomenon much sooner in the
life of the project. Actually seeing the change in reasoning was further
complicated by the fact that our expert has extremely broad experience. Hence,
finding a completely unfamiliar example was quite difficult.

We have also noted a lurking danger in dealing with experts. It appears to be
possible to give an expert a false sense of comfort with a particular formalism
(eg., rules). At times we had a sense that the expert was trying to make us
happy by expressing what he was doing in terms of the rule framework we had
offered--perhaps at the cost of accuracy. We would be well-advised to avoid
over-reliance on the rule (or any other presently known) framework. We don't
want to convince the expert that this simple idea covers everything he does, or
that system failures are necessarily the result of incorrect or missing rules.

With regard to acceptance of the expert systems approach, our experience has
been somewhat different from that of the XCON (R1) designers at Digital
Equipment; that is, for R1 there was general relatively rapid acceptance of the
ideas within the organization. From early in the project concerns revolved
almost totally around performance and utility in the problem domain.

We have seen a substantial increase in the size of the rule base (approximately
tripled) and the functionality required of the system before we could consider
field evaluation. This is similar to the experience with R1. The size of its

rule base also tripled during the development phase.

The traditional wisdom notes the importance of early construction of a flexible
user interface. For the Dipmeter Advisor system the interface is graphical.
It has proved invaluable in testing and user acceptance. Furthermore, expert
systems that are actually used by people trying to solve problems in their own
domains of interest (as opposed to being used by researchers as vehicles for
experimentation with AI techniques) must pay particular attention to human
interface issues.

For the Dipmeter Advisor system, it was only after we constructed a personal
workstation implementation that was flexible, robust, and fast that it became
possible to seriously consider testing by the Schlumbrger engineering
organization.

One final observation worth noting relates to the impact of an expert system on
the domain experts. As has been found in other applications of expert systems,
the existence of an expert system is helping to identify the real knowledge
used in the field--the kind of knowledge that is rarely found in textbooks. A
program that captures some of it at least gives a concrete basis for comparing
the methods of different experts. It can also help a group to reach some form
of consensus. The Dipmeter Advisor system has stimulated an examination of
current dipmeter interpretation methods that promises to improve quality.

APPENDIX 1 - DEFINITIONS OF INFERENCE AND SEARCH TECHNIQUES

The following material is taken from:

 An Overview of Expert Systems
 W.B.Gevarter
 National Bureau of Standards, Washington, DC
 May, 1982 NBSIR 82-2505

A. EFFICIENT SEARCH MECHANISMS

1. Forward Chaining

When data or basic ideas are a starting point, forward chaining is a natural
direction for problem solving. It has been used in expert systems for data
analysis, design, diagnosis, and concept formation.

2. Backward Chaining

This approach is applicable when a goal or a hypotheses is a starting point.
Expert system examples include those used for diagnosis and planning.

3. Forward and Backward Processing Combined

When the search space is relatively large, one approach is to search both from
the initial state and from the goal or hypothesis state and utilize a
relaxation type approach to match the solutions at an intermediate point. This
approach is also useful when the search space can be divided hierarchically, so
both a bottom up and top down search can be appropriately combined. Such a
combined search is particularly applicable to complex problems incorporating
uncertainties, such as speech understanding as exemplified in HEARSAY II.

4. Event Driven

This problem solving direction is similar to forward chaining except that the
data or situation is evolving over time. In this case the next step is chosen
either on the basis of new data or in response to a changed situation resulting
from the last problem solving step taken. This event driven approach is
appropriate for real-time operations, such as monitoring or control, and is
also applicable to many planning problems.

B. Search Control and Transformation Mechanisms

Many straightforward problems in areas such as design, diagnosis, and analysis
have small search spaces, either because the problem is small or the problem
can be broken up into small independent subproblems. Often a single line of
reasoning is sufficient and so backtracking is not required. In such cases,
the direct approach of exhaustive search can be appropriate, as was used in
MYCIN and R1.

1. Generate and Test

Search is often formulated as "generate and test" - reasoning by elimination.
In this approach, the system generates possible solutions and a tester prunes
those solutions that fail to meet apprpriate criteria. Such exhaustive
reasoning by elimination can be appropriate for small search spaces, but for
large search spaces more powerful techniques are needed.

2. Hierarchical Generate and Test

A hierarchical generate and test approach can be very effective if means are
available for evaluating candidate solutions that are only partially specified.
In these cases, early pruning of whole branches (representing entire classes of
solutions associated with these partial specifications) is possible, massively
reducing the search required.

Hierarchical generate and test is appropriate for many large data
interpretation and diagnosis problems, for which all solutions are desired,
providing a generator can be devised that can partition the solution space in
ways that allow for early pruning.

3. Dependency-Directed Backtracking

In the generate and test approach, when a line of reasoning fails and must be
retracted, one approach is to backtrack to the most recent choice point
(chronological backtracking). However, it is often much more efficient to

trace errors and inconsistencies back to the inferential steps that created
them, using dependency records as is done in MOLGEN. Backtracking that is
based on dependencies and determines what to invalidate is called
dependency-directed (or relevant) backtracking.

4. Multiple Lines of Reasoning

This approach can be used to broaden the coverage of an incomplete search. In
this case, search programs that have fallible evaluators can decrease the
chances of discarding a good solution from weak evidence by carrying a limited
number of solutions in parallel, until the best solutions is clarified.

5. Breaking the Problem Down Into Subproblems

This approach (yielding smaller search spaces) is applicable for problems in
which a number of non-interacting tasks have to be done to achieve a goal.
Unfortunately, few real world problems of any magnitude fall into this class.

For most complex problems that can be broken up into subproblems, it has been
found that the subproblems interact so that valid solutions cannot be found
independently. However, to take advantage of the smaller search spaces
associated with this approach, a number of techniques have been devised to deal
with these interactions.

Sometimes it is possible to find an ordered partioning so that no interactions
occur. The R1 system for configuring VAX computers successfully takes this
approach.

A technique called least commitment coordinates decision-making with the
availability of information and moves the focus of problem-solving activity
among the available subproblems. Decisions are not made arbitrarily or
prematurely, but are postponed until there is enough information. In planning
problems, this is exemplified by methods that assign a partial ordering of
operators in each subproblem and only complete the ordering when sufficient
information on the interactions of the subproblems is developed.

Another approach, used by MOLGEN and called constraint propagation, is to
represent the interaction between the subproblems as constraints. Constraints
can be viewed as partial descriptions of entities, or as relationships
(subgoals) that must be satisfied. Constraint propagation is a mechanism for
moving information between subproblems. By introducing constraints instead of
choosing particular values, a problem solver is able to pursue a least
commitment style of problem solving.

6. Guessing or Plausible Reasoning

Guessing is an inherent part of heuristic search, but is particularly important
in working with interacting subproblems. For instance, in the least commitment
approach the solution process must come to a halt when it has insufficient
informatipon for deciding between competing choices. In such cases, heuristic
guessing is needed to carry the solution process along. If the guesses are
wrong, then dependency-directed backtracking can be used to efficiently recover
from them. EL and MOLGEN take this approach.

7. Top Down Refinement

Often, the most important aspects of a problem can be abstracted and a high
level solution developed. This solution can then be iteratively refined,
successively including more details. An example is to initially plan a trip
using a reduced scale map to located the main highways, and then use more
detailed maps to refine the plan. This technique has many applications as the
top level search space is suitably small. The resulting high level solution
constrains the search to a small portion of the search space at the next lower
level, so that at each level the solution can readily be found. This procedure
is an important technique for preventing combinatorial explosions in searching
for a solution.

8. Hierarchical Resolution

Certain problems can have their solution space hierarchically resolved into
contributing subspaces in which the elements of the higher level spaces are
composed of elements from the lower spaces. Thus, in speech understanding,
words would be composed of syllables, words, phrases of words, and sentences of
phrases. The resulting heterogenous subspaces are fundamentally different from
the top level solution space. However, the solution candidates at each level
are useful for restricting the range of search at the adjacent levels, again
acting as an important restraint on combinatorial explosion. Another example
of a possible hierarchical resolution is in electrical equipment design whre
subcomponents contribute to the black box level, which in turn contribute to
the system level. Similarly, examples can be found in architecture, and in
spacecraft and aircraft design.

9. Employing Multiple Models

Sometimes the search for a solution utilizing a single model is very difficult.
The use of alternative models for either the whole or part of the problem may
greatly simplify the search. The SYN program is a good example of combining
the strengths of multiple models by employing equivalent forms of electrical
circuits.

10. Meta Reasoning

It is possible to add additional layers of spaces to a search space to help
decide what to do next. These can be thought of as strategy and tactical
layers in which meta problem solvers choose among several potential methods for
deciding what to do next at the problem level. The strategy, focusing and
scheduling meta rules used in CRYSALIS and the use of a strategy space in
MOLGEN fall into this category.

APPENDIX 2 - THE TOOLS OF THE TRADE

The following material is taken from:

 An Overview of Expert Systems
 W.B.Gevarter
 National Bureau of Standards, Washington, DC
 May, 1982 NBSIR 82-2505

 Artificial Intelligence in Business
 Paul Harmon and David King
 John Wiley and Sons
 New York, 1985

LISP

AI is considered a young field, but LISP, its premier programming language, is,
relatively speaking, an old-timer. The only older programming language still
in use is Fortran. While Fortran was designed primarly for numerical
computation, LISP was designed primarily for manipulating symbols. Symbolic
processing languages, such as LISP, extend our ability to use computers from
the relatively smaller realm of numeric problems to the larger realm in which
we work in words and symbols.

LISP, developed by John McCarthy (now professor of computer science at Stanford
University) at the Massachusetts Institute of Technology in the late 1950s,
stands for LISt Processor. LISP programs consist of collections of procedures
in list form that operate together to accomplish a given purpose.

A LISP list is a string of "atoms," the basic elements that the system will
manipulate, enclosed by parentheses. A list can be empty or can consist of
either atoms (such as numbers, symbols, or words) or other lists.

The ease and power of recursion in LISP programs are notable. When you have
solved a portion of a problem, and the problem-solving method is applicable to
the remaining portion of the problem, LISP allows you to define a function to
use itself repeatedly on subproblems.

LISP is a flexible language that you can modify for your own needs. You can
write code ranging from operating systems to high-level programs in LISP. In
fact, LISP itself can be written in LISP. LISP makes no distinction between
lists that contain data and lists that contain programs. This makes it easy
for LISP programs to manipulate or even generate other LISP programs. In
addition, it is possible to integrate data and information about procedures.

This integration forms the basis for sophisticated "frame" and "object-based"
systems commonly used in AI applications.

COMMON LISP is the de facto standard LISP and provides a base dialect from
which other implementations can stem for use on personal computers, commercial
timeshare computers, and supercomputers. For this reason, COMMON LISP omits
features that are useful only on some classes of processors.

PROLOG

Prolog, which was named for PROgramming in LOGic, was developed at the
University of Marseilles by Professor Alain Comerauer and his colleagues in the
early 1970s. Other centers of Prolog development have been London and
Budapest.

Like LISP, Prolog was designed for the manipulation of symbols, and both
languages lend themselves to expressing predicate calculus logic. Prolog is
also interactive, like LISP. Prolog, however, is characterized as a
relation-processor rather than as a list-processor like LISP. Prolog was
intended for use in natural language processing systems, but has also shown its
usefulness in the areas of computer-aided architectural design, expert systems,
and database building and query systems.

Prolog is designed in such a way as to automate search through a
tree-structured domain or knowledge base. Since many knowledge bases have
treelike shapes, Prolog has naturally been applied to language and query
applications.

Prolog shows some promise as a suitable language for parallel processing
systems now beginning to be developed. In a masively parallel processor (MPP),
each node in the tree structure would be assigned to a separate processor. A
Prolog application would propagate through the MPP by passing messages to
activate links to nodes. In a parallel processor with only a few nodes, a
Prolog program could assign tasks to processors each time the program reaches a
branch point.

While LISP has been the language of choice for artificial intelligence in the
United States, Prolog has been the leader in Japan, France, the United Kingdom,
and Hungary. One reason may be that Prolog programs are smaller and are easier
to read than equivalent LISP programs. Another reason is that Prolog's
logic-based semantics hold the promise of helping to simplify the
representation of knowledge. If Prolog is an inherently parallel-processing
language as many contend, then it is a good fit for the parallel-processing
computers the Japanese hope to build in their Fifth-Generation Computer
Project.

EMYCIN

EMYCIN is the oldest system building tool in the AI environment, and it has
been moderately successful.

As they finished their work, the developers of MYCIN, an expert system for
diagnosing bacterial infections, realized that there wer two distinct parts to
their system: the knowledge base, which was specific to the area of medical
diagnosis, and the inference engine, which was a general-purpose back-chaining
rule evaluator. This distinction led to building an empty MYCIN, or EMYCIN--a
MYCIN without its knowledge base.

EMYCIN is a tool for building MYCIN-like consultation systems. EMYCIN expects
knowledge to be represented as objects, attributes, values, and rules in much

the same way that a spreadsheet program expects its data to form rows and
columns. EMYCIN contains all machinery needed to reason over a knowledge base
and to conduct consultations with a user. Over the years, editors and
debugging aids were added to assist a knowledge engineer in building the
system. EMYCIN is a knowledge system without any domain knowledge.

EMYCIN is a tool and not a computing language. It is less general than LISP or
INTERLISP, in which it was written. LISP is a general-purpose list porcessing
language, whereas EMYCIN is a special-purpose O-A-V/rule processor that uses
backward chaining.

OPS5

The OPS5 language was created by Dr. Charles L. Forgy, a research computer
scientist at Carnegie-Mellon University, in the late 1970s for building large,
forward or backward-chaining, production-based expert systems. Because of this
emplasis, OPS5 is not considered a general purpose language such as LISP or
Prolog. The OPS4 version of the language was written in LISP. OPS5, which
Forgy wrote to be easier to read and maintain, has had three different
interpreters, written in BLISS for VAX mainframes, and MACLISP and Franz LISP
for smaller computers.

A production system is a program consisting of condition/action rules phrased
in IF...THEN style. The knowledge base of an expert system written in OPS5,
called production menory, consists entirely of production rules expressing
knowledge about a problem domain. OPS5 programs have two other components: a
database called working memory and the interpreter, referred to as the
inference engine, which is the part of the system that selects and executes the
appropriate rule at each point in processing.

At the start of the program, the user enters data and parameters relevant to
the current instance of the problem to be solved into working memory. As
processing moves along, working memory changes to reflect new information
inferred by the system at each step.

The inference engine evaluates all of the rules to see which have IF portions
that are exactly satisfied by the current state of the working memory. This
set of rules is called the conflict set. If there are two or more satisfied
IF's, the inference engine will act on whichever one its built-in protocol
selects. This process is known as conflict resolution. Examples of conflict
resolution strategies are "Fire the rule with the most precise (or complex) set
of conditions" and "Fire the rule that references the newest data." Upon
conflict resolution, the appropriate rule fires, that is, the THEN portion acts
to change the working memory. Because this action changes the working memory,
on the next round when the inference engine evaluates rules, there may be a new
conflict set.

This cycle of recognizing the appropriate rule to fire, based on the updated
contents of working memory, and acting by firing the rule to change working
memory, continues until a conclusion is reached; that is, until the conflict
set is empty or a rule halts the program. The problem solution or conclusion
is represented by the final state of working memory.

The flow of control in an OPS5 program is not determined by the order in which

the programmer puts the rules in the system. Rules become candidates to fire
when the "If" statement is satisfied by information in working memory.

In a conventional programming language, the order of the instructions in the
program is important; if you have to add a new instruction to the system, an
error in its location can change the entire function to yield a wrong result.

The sequence in which rules are written in an OPS5 program is not important.
Program execution does not rely on rules being in any particular order. This
makes adding new information to an OPS5 program relatively easy.

OPS5 is most often used as a forward-chaining language, which makes it
appropriate for expert systems whose solutions can be reached by asking, "Given
these facts, what follows?" This mode of operation has been useful in systems
like XCON (previously called R1), the computer configuration system Professor
John McDermott of Carnegie-Mellon University designed for Digital Equipment
Corporation. McDermott also employed OPS5 in MUDMAN, an expert system,
available from NL Baroid of Houston, for analyzing problems related to an
oil-well drilling lubricant. A similar program, called DRILLING ADVISOR. was
developed by Elf-Aquitaine using KES-300, a derivitive of EMYCIN, described
earlier.

ART--THE AUTOMATED REASONING TOOL

The Automated Reasoning Tool (ART) from Inference Corporation is a tool kit for
knowledge system development. The kit contains four major components: a
knowledge language for expressing facts and relationships; a compiler for
converting the knowledge language into LISP; an applier, which is an inference
engine; and a development environment, which includes debugging aids and trace
functions.

ART is a very general tool applicable to many problems. For example, ART
supports time tagging within its inheritance functions. This suggests that ART
can be used to build systems that reason about time-dependent events.
unfortunately, there are no examples of ART in action in a commercial setting.
Examples in the ART materials are about very small, "toy" systems.

ART provides a number of representations to store and maintain facts. One is
the traditional O-A-V triplet. A second means of representation, called a
fact, is a proposition with a truth value and a scope. Quantifiers (ie.,
"There exists at least one ..." and "For all...") are supported by ART.
Inheritance is represented by logical linkages among objects and facts. Also,
attributes and values can be inherited by parent objects in a hierarchy.
Prototypical classes can be defined with default values that change only if
necessary.

The inference engine or knowledge applier is described as being an
opportunistic reasoner. This means that ART can reason with both forward and
backward chaining, or with explicit procedural commands. Rules affect the
direction of inference. In this way the inference engine moves
opportunistically, depending on the pattern of intermediate results. ART also
supports confidence ratings. Like all of the hybrid tools, ART is a very
powerful programming environment that can, in the hands of a skilled knowledge
engineer, be made to perform in a variety of different ways.

ART has a wide variety of interface features, all oriented toward helping the
knowledge engineer develop an expert system. The tool is flexible enough that
a skilled knowledge engineer can ues ART to develop whatever usr interface is
desired.

ART is written in LISP and runs on LISP machines produced by Xerox and
Symbolics. ART is available from Inference Corporation, Los Angeles,
California. An initial copy costs $60,000; a second copy can be purchased for
$20,000. ART can be leased for $1000 per month, or for $3000 per month with an
option to buy it at the end of six months.

KEE--THE KNOWLEDGE ENGINEERING ENVIRONMENT

The Knowledge Engineerng Environment (KEE) is an integrated package of software
tools available from IntelliCorp (formerly IntelliGenetics). IntelliCorp was
the first knowledge engineering company, founded in 1980, and its original goal
was to market genetic engineering software. In August 1983 IntelliCorp began
selling KEE, a hybrid tool derived from its work with genetic engineer
software. KEE, is therefore, a tool that was originally derived from complex
analysis and planning applications. An enhanced version of KEE was announced
in August 1984.

KEE has been used to build a number of widely used genetic engineering
knowledge systems. These systems offer advice about the design of molecular
genetics experiments. KEE has also been used to develop an integrated
interface to a nuclear magnetic resonance spectrometer, an application that
demonstrates that KEE can be embedded in laboratory equipment. KEE is popular
with several R&D groups that are currently working on prototype applications.
Arthur D. Little Co., for example, is working with several of its clients to
develop KEE-based planning applications.

KEE's basic representational paradigm is frames, which unify the procedural and
declarative expressions of knowledge. KEE is an example of object-oriented
programming. Facts and rules in KEE are represented as objects or frames that
have labled slots containing either values or means for obtaining values.
Slots can contain a number of different entities. A slot may contain a
procedural attachment, that is, a set of instructions that compute a value for
a slot. Similarly, a slot may contain a set of rules that conclude values for
other slots in the frame. Procedural knowledge can also be inserted in a slot
as a LISP program. A slot may also point to another frame and indicated an
inheritance relationship.

Redundant information entry is minimized with inheritance hierarchies. A
knowledge engineer can build a knowledge base hierarchy by initially specifying
generic objects and their attributes. Then, when specific objects are created,
they will automatically inherit attributes of the generic objects in the
knowledge base. As a result, the knowledge engineer needs to focus on only a
nominal number of unique attributes for each new object.

KEE integrates frame-based and rule-based reasoning techniques to describe
structures and behaviors quickly. The frame-based system enables one to include
descriptive and procedural knowledge with each object. KEE allows one to

define class member and subclass relatiopnships so that each link type has a
uniform semantic interpretation throughtout a knowledge base.

Because user interface commands run as separate processes, the knowledge
engineer can change the value of any attribute of any object while the rule
system is running and can also browse through and display different objects in
the knowledge base. Rules and objects can be easily identified and enhanced to
improve the system's performance.

Graphics are linked to the underlying knowledge base to help explain the
representation, reasoning, and behavior of a knowledge system. Using KEE's
graphics editor menus, the knowledge engineer can design and construct graphic
models of physical objects such as meters and gauges to monitor specific
values. In the tradition of object-oriented programming, frames (as objects)
communicate with one another by sending messages to one another. A message
might be a request to display information or to execute a set of rules.

The inferencing scheme for KEE is quite flexible. It can be programmed to
behave as a back-chainer or a forward-chainer. Values in slots can be
manipulated, and results ripple throughout the logical structure of the
knowledge base. Such values are called active values.

There is no sharp distinction between the consumer and creator of a KEE
knowledge base. This is just another way of saying that KEE is a hybrid system
that requires considerable sophistication on the part of the knowledge engineer
or user. The user interface provides a number of graphics features that aid
the knowledge engineer in the development and debugging of a knowledge system.

For example, when the knowledge base does not contain information on the state
of an attribute, and there are no rules enabling the system to determine values
from other knowledge, the system will prompt the user for an answer. The user,
in turn, can ask the system why it needs to know, and see the line of reasoning
leading to the questions. The line of reasoning for any set of conclusions can
be shown graphically, so the user can determine how a conclusion was reached.
A graphics display of the decision process adds credibility to decisions that
are correct and visibility to decisions that are not.

KEE is a hybrid system and therefore can be extended by the knowledge engineer.
Many of KEE's functions are defined by KEE System Knowledge Bases. Thus, the
same processes used to build a knowledge system can also be used, for example,
to modify existing inheritance rules or create new ones.

KEE is supported by IntelliCorp in several ways. A three-day training program
is standard and further support is available after an application project is
underway. In addition, on-site consulting by an IntelliCorp knowledge engineer
is included with purchase of the tool.

KEE is implemented in LISP and is available on the Xerox 1100 machine, the
Symbolics 3600 machine, the LMI LAMDA, and the TI Explorer. KEE can be
purchased from IntelliCorp for $60,000. The cost declines rapidly for multiple
copies.

LOOPS

LOOPS is a knowledge engineering environment developed at the Xerox Palo Alto
Research Center (Xerox PARC). LOOPS is a software tool that incorporates a
variety of different knowledge engineering constructs in one unified package.
The constructs include object-oriented programming, the use of active value, a
knowledge base management scheme, and a rule package.

A great number of the features of LOOPS are related to support available in the
INTERLISP environment. For example, it is possible to review programs under
development in LOOPS with a variety of graphical schemes. These schemes are
essentially schemes provided by INTERLISP by means of its windows and break
packages. After a rule is fired, it is possible to examine what the rule was,
what the effect was, waht the effect of its firing was, and to trace down
aspects of reasoning that take place during a program's execution.

A second construct incorporated in LOOPS is the idea of an active value. An
active value operates like a probe. By examining an active value, one can see
the current status of a variable being reasoned about. By attaching a graphic
picture, such as a gauge or thermometer, one can see an analog representation
of a variable that is being reasoned about. Moreover, one can monitor changes
in that value as processing continues . By changing an active value, one can
view a series of side effects associated with that value's changing.

Object-oriented programming is an orientation toward viewing the entities in a
program as objects (or units or frames) that communicate with each other via
messages. Attached to eack frame are constructions and declarations that
define and elaborate what the frame is about. When a message arrives at a
frame, attachments to that frame process the message and carry out its effects.

Prodecural and rule-oriented programming is also supported by LOOPS in a
conventional way. The unique aspect of having rules and procedures as part of
LOOPS comes not from the procedures as such but from how they are integrated
with active values and object-oriented programming.

Perhaps LOOPS should be thought of as an environment rather than a tool. In
order to build an expert system with LOOPS, one must choose from a variety of
different approaches and write a fair amount of code before the system begins
to home in on and help to structure the knowledge system. Its utility is
primarily as a software engineer's environment, where a variety of useful
subroutines have been prepared and are ready to assemble; and that is
strikingly different than a tool such as S.1, where a large number of design
decisions have already been made and are "hard-wired" into the system.

Xerox PARC has offered a three-and-a-half day course to teach parrticipants to
use LOOPS. The course is built around a game called "Truckin." Each
participant develops a program to manage a "truck." Then the various truck
programs compete to buy and sell commodities and avoid the hazards of the road
in a simulated environment.

LOOPS is implemented in INTERLISP and runs on Xerox 1100 LISP-based personal
workstations. LOOPS is available fromm Xerox for $300 !!! in an unsupported
version. Xerox apparently regards LOOPS simply as a research tool and a
powerful demonstration of what the 1100 series of LISP work-stations can do.

EXPERT

EXPERT is a tool for designing and building consultation systems. It paradigm
is the diagnosis/prescription model (which its developer call the
classification model). EXPERT was built by Sholom Weiss and Casimir Kulikowski
of Rutgers University. These two individuals have used the system to develop
several large and small knowledge systems.

The three examples that we outline below are described in detail in a book
written by EXPERT's creators, A Pracical Guide to Designing Expert Systems
(1984):

- Serum protein diagnosis program. This knowledge system examines profiles of
data from a spectrum analyzer. It classifies the profiles and selects an
appropriate diagnosis to display. The system was build with EXPERT and then
recoded into assembly languagee to be stored in a read only memory (ROM). This
ROM is installed in the spectrum analyzer. The instrument plots the profile
and prints an interpretation.

- Another, Larger system built with EXPERT is a rheumatic disease consultant.

- EXPERT has been used to develop a log analysis system for oil drilling. The
system is called ELAS and was developed for Amoco as a front end to their
interactive log analysis package. Details are described elsewhere in this
report.

EXPERT stores facts as attribute-value pairs. Facts are classified in two
ways: as findings or hypotheses. Findings are observational data coming into
the system. Hypotheses are potential solutions, one or more of which will be
selected by the system. Relationships and heuristics are stored as production
rules grouped in three categories:

- "F-F" rules that link a finding with other findings,
- "F-H" rules that relate findings to hypotheses, and
- "H-H" rules that link one hypothesis with other hypotheses.

In the ordinary course of a consultation, incoming data are interpreted and
refined with F-F rules. The consolidated description of the findings are then
related to the set of possible solutions with F-H rules. Finally, hypotheses
are refined using the H-H rules.

The inference engine for EXPERT is questionaire-driven. Findings are sought
one after another before the system begins to reason. After all information is
obtained, rules are fired in the following order: F-F, F-H, and then H-H.
Thus, EXPERT is not a back-chainer. Control is established by the order and
category of the rules.

The system is able to reason with incomplete, and incomplete and uncertain
data. A belief measure ranging from -1 to 1 is associated with facts.
The user interface is very simple. Questions are asked, answers are obtained,
the reasoning process takes place, and an answer is given.

From the knowledge engineer's perspective, EXPERT is a batch-processing
knowledge system tool. There is no interactive editor, nor are there other
software aids for building knowledge bases. Trace facilities are available at

runtime to assist in debugging.

Statistical functions are available to examine how much a rule improves
performance. Modifying a rule changes the system's overall performance on a
set of cases. Errors occur in two ways: false-positive diagnoses (cases that
EXPERT judges faulty but are not) and false-negative ones (cases where EXPERT
fails to locate fault that is present). EXPERT's statistical functions assist
the system designer in tuning the performance of the system.

EXPERT is written in FORTRAN and is available for a number of different
operating systems and many types of hardware. Interfaces to data bases and
sensors are supported by FORTRAN. Acces to EXPERT is via Rutgers University
and is subject to negotiation.

TIMM-THE INTELLIGENT MACHINE MODEL

The Intelligent Machine Model (TIMM) is a knowledge system building tool
designed to be used by subject matter experts. TIMM focuses on cases that
represent good examples according to the expert. In effect, TIMM works like a
more complex version of Expert-Ease. Each set of examples forms a matrix and a
matrix is, in effect, a rule. Each rule is created as the expert enters
examples. Unlike Expert-Ease, however, TIMM enables several rules to be
created and linked together. TIMM's example-oriented knowledge acquiaition
system makes it especially appropriate for systems builders who want to model
their own expertise. Several commercial systems have been built using TIMM.

Facts in TIMM are represented as attribute-value pairs. Rules are not entered
directly but, rather, are build from stylized examples. That is, examples are
entered as a set of conditions (attributes) related to a particular outcome or
recommendation. TIMM is able to consolidate and generalize rules based on a
set of cases. TIMM is capable of storing about 500 rules. It is able to
handle problems that require a system to choose among 25 distinct
recommendations based on some 50 factors, each of which can have up to 25
different values.

TIMM does not support associations and inheritance relationships, nor are there
explicit ways of controlling the flow of a consultation. Inference and control
decisions are made by an algorithm that optimizes a path through a decision
tree that TIMM creates from the examples and rules it is given.

Inexact and incomplete information is handled in two ways. First, there is a
certainty factor between 0 and 100 associated with facts. Second, there is a
reliability number, also ranging from 0 to 100, that is associated with each
set of examples and their conclusions. Thus, TIMM can report a soluton with
certainty 50 and reliability 80.

In the case of TIMM, the knowledge system designer is a subject matter expert,
not a knowledge engineer. Here is how a knowledge system building session
proceeds:

- TIMM interogates the expert about what attributes matter with respect to a
particular domain. Ranges of acceptable values are stored.

- TIMM requests that outcome or result for an example in the problem domain.
It then probes to see what values are associated with the attributes for that
case.

- TIMM generalizes rules and optimizes a decision tree based on the cases
generated by the expert.

TIMM provides some debugging aids for the system builder. One is an
explanation facility, which kdentifies all rules used in a consultation.

A two-day training course and maintenance is included in the price. Support
services, 25 user's manuals, and on-site installation is also provided with
each purchase. TIMM is written in FORTRAN. It is available for many mainframe
and minicomputers such as IBM, DEC, Prime, and others. General Research has a
personal conputer-based version of TIMM.

TIMM is available from General Research Corporation. Version 2.0, capable of
linking together separate knowledge bases, is priced at $39,500. The IBM PC XT
version of TIMM costs $9,500. TIMM is also offered via time sharing for a
monthly charge of $500 plus computer time.

APPENDIX 3 - BIBLIOGRAPHY

1. The Artificial Intelligence Experience
 Susan J. Scown
 Digital Equipment Inc., 1985

2. Artificial Intelligence in Business
 Paul Harmon and David King
 John Wiley and Sons
 New York, 1985

3. Understanding Artificial Intelligence
 H.C.Mishkoff
 Texas Instruments Learning Center, 1985

4. Handbook of Artificial Intelligence (3 volumes)
 Avron Barr, Edward Feigenbaum et al
 W. Kaufman Publishing, Los Altos, 1981

5. Artificial Intelligence
 David L. Waltz
 Scientific American, Oct. 1982

6. Programming in Prolog
 W.F.Clocksin, C.S.Mellish
 Springer Verlag, 1982

7. LISP
 P.H.Winston
 Berthod-Klaus-Paul-Horn, 1983

8. Principles of Artificial Intelligence
 N.J.Nillson
 Tioga Press. 1982

9. Programming in OPS5
 Lee Brownstone et al
 Addison Wesley, 1985

10. Building Expert Systems for Controlling Complex Programs
 Sholom Weiss et al
 Rutgers University/Amoco, 1983

11. An Approach to Expert Control of Interactive Software Systems
 Sholom Weiss et al
 Proc IEEE, 1985

12. The Dipmeter Advisor: Interpretation of Geologic Signals
 Randall Davis et al
 Proc IJCAI, 1981

13. The Dipmeter Advisor System
 Reid Smith and James Baker
 Proc IJCAI, 1983

14. Applying Artificial Intelligence to the Interpretation of Well Logs
 P.L.Baker and S.W.Smoliar
 Proc IEEE, 1984

15. Problem Solving in The Domain of Quantitative Well Log Analysis
 Stephan W. Smoliar
 Proc IEEE, 1985

16. Expert Systems and Deep Knowledge
 Stephan W. Smoliar
 10th World Computer Conference,1985

17. An Object Oriented Approach to Planning
 Stephan W. Smoliar
 Schlumberger, 1985

18. Strobe: Support for Structured Object Knowledge Representation
 Reid G. Smith
 Proc IJCAI, 1983

19. Impulse: A Display Oriented Editor for Strobe
 Eric S. Schoen, Reid G. Smith
 Proc Nat Conf AI, 1983

20. A Modular Tool Kit for Knowledge Management
 Gilles M. Lafue, Reid G. Smith
 Proc IJCAI, 1984

21. Declarative Task Descriptions as a User Interface Structuring
 Mechanism
 R.G. Smith, G.M.E. Lafue, S.C. Vestal
 Computer Magazine, Sept, 1984

22. Implementation of an Integrity Manager With A Knowledge
 Representation System
 R.G. Smith, G.M.E. Lafue
 Expert Database Systems, 1985

23. Representation and Use of Explicit Justifications for Knowledge Base
 Refinement
 R.G. Smith, H.A. Winston
 IJCAI, 1985

24. The Design of the Dipmeter Advisor System
 R.G. Smith, R.L. Young
 Proc ACM, 1984

25. On the Design of Commercial Expert Systems
 Reid G. Smith
 AI Magazine, Fall 1984

26. The Use of Qualitative and Qualitative Simulations
 Reid G. Simmons
 AI Lab Report, MIT, 1984

27. Oil well Data Interpretation Using Expert System and Pattern
 Recognition Techniques
 Alain Bonnet, Claude Dehan
 IJCAI, 1984

28. Model Expert System (for log analysis)
 Guan Jiwen, Xu Yung, Chang Minche, Zhao Jizhi
 IJCAI, 1984

29. Development of the Prospector Consultation System for Mineral
 Exploration
 R.O. Duda, et al
 SRI Report, 1978

30. Model Design in the Prospector Consultant System for Mineral
 Exploration
 R.Duda, J.Gasnig, P.Hart
 Expert Systems and AI Applications, 1979

 TABLE 1 EXPERT SYSTEM TOOLS

 System Name Available On Language Supplier

Small Systems
AL/X Apple II Pascal U. of Edinburgh
 Edinburgh, Scotland

ESP Advisor IBM PC Prolog Expert Systems
 King of Prussia, PA, 19406

Expert/Ease IBM PC Pascal Expert Software
 DEC Rainbow San Francisco, CA, 94114

EXSYS IBM PC C EXSYS Inc.
 Albuquerque, NM, 7194

Insight IBM PC Pascal Level 5 Research
 DEC Rainbow Melbourne Beach, FL, 32951

M.1 IBM PC Prolog Teknowledge
 Palo Alto, CA,94301

OPS5+ IBM PC C Artelligence
 Dallas, TX, 75240

Personal Consultant IBM PC C Texas Instruments
 TI PC Dallas, TX, 75380

Series-PC IBM PC Lisp SRI International
 Menlo Park, CA, 94025

Medium Systems
Expert IBM Fortran Rutgers University
 New Brunswick, NJ, 08903

KES IBM PC Lisp Software A&E
 DEC VAX Arlington, VA, 22209
 Apollo, Xerox
 Symbolics

